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ABSTRACT

This program was designed to permit the ONR sponsored program in the Materials Research
Laboratory at Penn State, now a component in the Materials Research Institute, to draw upon
the expertise of Professor Jan Fousek an internationally respected authority on domain
processes in ferroelectrics. The program has sponsored Dr. Fousek for 3 month visits to Penn
State in 1999, 2000 and 2001. Dr. Fousek is deeply respected in the MRL and has been able to
interact effectively and provide advice which is bearing fruit in both practical and fundamental
studies now ongoing and also contemplated in future studies. Topics which have benefited
most from the interaction are briefly discussed in the report and several publications which

were greatly facilitated are included as appendices to this report.

1. INTRODUCTION

Domain wall processes are widely accepted to be of major importance in facilitating the
performance of piezoelectric materials derived from oxygen octahedron type ferroelectrics
with centric prototypic symmetrys as exemplified in the most widely used perovskites structure
material families. The solid solution system between lead zirconate and lead titanate (PZT) is
much the most widely used piezoelectric ceramic, and here the compositions of most interest
cluster around the morphotropic phase boundary (MPB) between ferroelectric thombohedral
and ferroelectric tetragonal forms. Unfortunately at the 52% Z1/48% Ti composition of this
phase boundary PZT has proven impossible to grow in single crystal form however, recently
lead zinc niobate: lead titanate and lead magnesium niobate: lead titanate have been shown to
have pseudo-morphotropic thombohedral: tetragonal ferroelectric phase boundaries and both
can be grown (with some difficulty) in effective single crystal form. Now with control of
orientation of the field with respect to the crystal axes, the concepts of Domain Engineering
and Domain Averaging could be examined with Fousek, the huge anisotropy in properties
explained and massive anhysteretic strain capability rationalized.

A second area which has been most productive was the suggestion to explore
flexoelectricity i.e. the generation of electric field/polarization by an elastic strain gradient.
The work stemmed from discussions with Fousek concerning composites with oriented cone

shaped inclusions which from the shape must be piezoelectric. We concluded the origin of the




charge separation must be the strain gradient induced by the cone shape and determined to
explore gradient induced (flexoelectric) effects to see if useful properties could result which
would be very different from conventional ceramics.

Throughout the full period of the grant, Fousek and Cross have cooperating in assembling
material for a book on Domain Walls and Switching in Ferroic Materials. Unfortunately, the
magnitude of the task of writing a truly authoritative work on this topic was originally grossly
underestimated and the original proposed time scale has now expanded from 3 to 5 years. The
whole significant new area of domain studies in thin films proved a major difficulty and we
were fortunate to be joined by Dr. Alexander Tagantsev as a co-author. Now all chapters are
undergoing second revisions and the deadline for submission of the manuscript is July 2003.

A third area of activity concerned the important task of completing the new IEEE standard
on Ferroelectricity which involves a number of MRL/MRI faculty. The proper definition of
polarization in a pyroelectric but non-ferroelectric polar crystal is non trivial but of significant
importance as ferroelectrics can occur from polar prototypic groups. Dr. Fousek was of great

assistance in removing the inconsistencies, which had vitiated the original standard.

2. APPROACH
2.1 DOMAIN RELATED STUDIES

The task for this program was not to complete specific studies, but rather to catalyze and
explore new areas related to current MRL programs which could have strong relevance to navy
needs. It was natural with the major database being generated on domains, domain walls and
switching for the book, to be in discussion on the fascinating domain related properties of the
important PZN:PT and PMN:PT single crystals being generated in the laboratory.

The publication “Engineering Multidomain Ferroic Samples” by Fousek and Cross
(Appendix 1) was probably the first attempt to systematize the possibilities of controlling
. domain structure to provide regular spacial arrays we called domain geometry engineered
samples where the domain is tuned to correspond to the k vectors of fields propagating through
the sample and domain average engineered samples where the crystal is sub divided into a very
large number of domains so as to yield on averaged “texture” symmetry. The concept is

further refined in the letter “Domain Geometry engineering and domain average engineering of



ferroics.” (Appendix 2) by Fousek, Litvin and Cross. Here the possibilities for generating a
whole range of averaged symmetries for particular sub sets of domains are discussed.

The importance of the domain average engineered structure in the 001 field poled
rthombohedral phase of the 0.955 lead zinc niobate 0.045 lead titanate for high strain actuation
was underscored in the paper “Domain and Phase Change Contributions to Response in High
Strain Piezoelectric Actuators” by Cross. (Appendix 3) Here there is no switching force on the
domain walls in the 001 poled condition so that the induced strain is intrinsic and shown to be
associated with a rotation of the 111 polarization vector in the domain towards the 001 field
direction. The calculated titling of Ps was later confirmed by optical studies by Z. Ye (1).

A further extension of the symmetry arguments to consider explicitly the polar character
of the domain is in the paper “Symmetry and antisymmet%y in Electroceramics” by Newnham
and Cross (Appendix 4) where the sample geometry is used to control modes of vibration and
their interaction with the polar structure is a Domain Geometry Engineered context.

A fascinating study, triggered by interaction between Fousek and Cao concerned the
characterizations of the strange S wall in Ferroelectrics (Appendix 5). The S walls refer to the
domain walls whose orientations do not coincide with simple crystallographic planes but are

planes of elastic strain compatibility and change with temperature. A simple continuum model

is constructed to describe S wall structures in a proper ferroelastic (m§ m— mmm ferroelastic
phase fransition). This model describes local values of elastic strain components and the

temperature dependence of the S wall orientation. Variation of strain across the S wall are also

derived.

2.2 STRAIN GRADIENT RELATED PROPERTIES

The major area of activity on strain gradient effects in dielectrics, flexoelectricity was
initiated through discussion with Dr. Fousek where we were looking for an explanation of the
shape induced piezoelectricity in composites, discussed in Appendix 6. To determine practical
feasibility of such a composite measurement of coefficients wyy11, 1122, 1212, in lead
magnesium niobate: lead titanate ceramic Appendix 7 were initiated.

The very high values of the coefficient p;, (1t1122) as compared to earlier measurements on
polymers lead us to suspect the relaxor character in PMN:PT Appendix 8 and a strong role of

micro-polar regions. Further studies on excellent Bag 7Sro3TiO3 ceramics however, revealed




constants even 10 times higher than in PMN:PT (Appendix 9). A very interesting feature of
the (BaSr)TiO; data was a steep upturn in the measured p, in the 15° C region above but close
to Tc where C departs from regular Curie Weiss behavior.

In further extension of these studies it was decided to explore an unpoled ferroelectric
ceramic under very large flexing stress to see if it would be possible to induce piezoelectric
poling (Appendix 10) using PZT 5 H obvious ferroelastic poling could be induced at the higher
stress levels, and a clear softening of the modulus was evident suggesting the onset of
ferroelastic wall motion. Closely coupled to this change was an obvious upturn in the
flexoelectric coefficient from 0.5 pc/m to 2.0 pc/m strongly suggesting an extrinsic
contribution to p; triggered by the ferroelastic wall motion.

We are excited that NUWC at Newport Rhode Island have excellent facilities for very
high strain 4 point bending tests and are interested to cooperate in extending the flexoelectric
studies to other ceramic and single crystal samples.

A third area, which was of considerable help, concerned the importance task of updating
the IEEE standard on Ferroelectricity, a task taken on by the MRL faculty. Here the proper
definition of polarization in a pyroelectric but no ferroelectric crystal is non trivial, but very
important. The original standard was demonstrably wrong in this context, but with Fousek’s

help we were able to arrive at a physically consistent definition.

3. SUMMARY OF SCIENCE AND TECHNOLOGY INITIATED

The task for the visits of Professor Jan Fousek was not to complete studies on this
program, but rather to initiate and advance important new concepts.

(i) Domain Geometry and Domain Average Engineering
Important MRL/MRI programs initiated in contact with Fousek are summarized in Appendixes
1-4. The first initiative in the laboratory on the theory of strange S walls in Appendix 5 opens
the more complex topic of strange walls in ferroelectrics and the rubber like elasticity which
can be generated.

(ii) Flexoelectricity: This whole exciting new mode of charge separation under strain
gradient stems from Fousek’s curiosity regarding shape induced piezoelectricity in composites.
(Appendix 6-9). Clearly there is a need for more measurements in high permittivity high

symmetry systems to understand the origins of the phenomenon and to provide reliable



theoretical underpinning. New measurements on unpoled high symmetry systems suggest that
the DC flexoelectric effects may give us new modes for separating intrinsic and extrinsic
domain related behaviors (Appendix 10).

(iii)) The importance of a proper Ginsburg: Landau formulation for antiferroelectrics is
highlighted in the works by Hatt and Gao. (Appendix 11, 12) Unlike earlier Landau
formulations this approach permits the proper modeling of the group symmetry and of twin and
antiphase boundaries.

(iv) Fousek’s most effective help is in formulating vital parts of the new IEEE standard
on ferroelectrics took a major load from MRL ONR related faculty and helped to clarify the
thinking of both students and faculty in MRL

4. IMPACT/NAVY RELEVANCE

Ferroelectric ceramic systems are very widely used in Navy undersea sonar systems. By
its very nature the poled ferroelectric piezoelectric ceramic has strong local gradients in
electric and elastic boundary conditions. Flexoelectric effects must be present and in many of
the best “soft” compositions relaxor effects occur. We will be providing the quantitative
background to understand the importance of these effects. In the newer single crystal
transducers domain averaging is exploited in the ultra high coupling rhombohedral

compositions. The complexity of possible averaging was ill appreciated.

5. PLANNED SCIENCE and TECHNOLOGY
It is anticipated that although the formal program was terminated in September 2001
personal contacts will continue with exchange of ideas on both fundamental and practical

issues in ferroelectric crystals and ceramics.

6. TECHNOLOGY TRANSFER

A continuous flux of small and mid-sized companies are involved with material and
device studies in MRI/MRL and afford many avenues for commercialization. For Navy needs
close cooperation with ARL at Penn State is well established and joint programs are now

extending to NUSC through Ewart and Amin.
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Engineering Multidomain Ferroic Samples
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Research Laboratory, The Pennsylvania State University, University Park, PA
16802, U.S.A.
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The existence of domains is essential in many practical applications of ferroics. Here we dis-
cuss devices in which a fixed spatial distribution of domains plays the significant role.
Depending on the prevailing attributes of multidomain single crystals, three different possi-
bilities can be distinguished. In domain-geometry-engineered samples the spatial distribution
of domains is tuned to correspond to the k-vectors of fields propagating through the material.
In domain-average-engineered samples the crystal is subdivided into a very large number of
domains, representing a J/imited number of domain states. In domain-wall-engineered sam-
ples the characteristics of static walls can play an essential role in the averaged macroscopic
properties. Examples illustrating these approaches are given.

Keywords: domain engineering; domain-geometry engineering; domain-average-engineer-
ing; domain-wall-engineering; multidomain ferroics; static domain pattern

1. INTRODUCTION

Practical applications of ferroics (undergoing a phase transition from
the point group G to F) are of two basically different characters: those
which rely on properties of single domain samples and those in which
the presence of domains is essential. The latter can be categorized into

(3831171
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devices based on dynamical domain processes or those in which a static
distribution of domains plays a significant role. Here we discuss the last
mentioned case: general characteristics of multidomain samples with
fixed spatial distribution of domains.

Depending on the prevailing attributes of multidomain single crystal
samples, several possibilities can be distinguished. Those discussed in
the following sections 2 to 4 differ in general features of the geometry
of domains and it is assumed that domain walls are of negligible
thickness. In the last considered case, the thickness of domain walls is
finite and specimens exhibit large wall density. Aspects of preparation
and properties of such samples are discussed in the section $.

2. DOMAIN-GEOMETRY-ENGINEERED FERROIC SAMPLES

As early as in 1964, Miller!! showed that a regular pattern consisting of
180° domains in BaTiO; with a period corresponding to the coherence
length could substantially increase the effectiveness of optical second
harmonic generation. The idea is based on two factors: a) domain states
differ in the sign of nonlinear optical coefficient, b) the width of
domains is tuned to the coherence length. It was Feng Duan et al. @
who succeeded in manufacturing a periodic domain pattern in LiNbO;
and proved its efficiency in nonlinear optics. More recently, S. N. Zhu
et al”’! initiated an essential progress in this field by producing a
domain pattern whose geometry corresponds to a Fibonacci superlattice
and which makes it possible to realize second harmonic generation for
muitiple wavelengths. But the significance of domain patterns with
engineered geometry was proved also in acoustics. Meeks at el
produced tunable acoustic systems based on spatial modulation of
elastic coefficients in a periodic domain pattern in NdPsO,4 while Y. Y.
Zhu et al."™! succeeded in producing transducers up to 800 MHz based
on spatial modulation of piezoelectric coefficients in multidomain
LiNbO;. :

In all these applications the periodicity of domain patterns
corresponds to k-vectors of propagating waves and the multidomain
domain systems represent just two domain states. Up to now less than
10 ferroics have been utilized in this area, and in any of these materials
the total number of domain states v=|G|/ |F| = 2 (here |G| and |F| stand
for the order of the parent and ferroic phase point groups, resp.). This is
understandable since to produce a regular pattern in ferroics with v > 2
in which only two domain states are involved is not trivial.
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To solve this task in particular cases experimentally is, however,
possible. In fact the nature itself shows that patterns with a regular
geometry of a limited number p < v of domain states can be
materialized. Several observations have been made of domain patterns
with regular geometry, fulfilling this requirement. As an example, we
refer to the Forsbergh’s square-net p:st‘it*erré6§ shown in Fig.1, which has
been repeatedly observed in BaTiO; single crystals as well as ceramic
grains. It might be inspiring to examine its macroscopic properties for
external fields with both k = 0 and k& = 0, based on its symmetry
characteristics. -

AN '
oineh " ,' ~

"‘4.rt:\v"4 SO = 4
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FIGURE 1 Example of a “natural” multiaxial domain-geometry
engineered system: the Forsbergh’s square-net pattern in tetragonal
BaTiO;. Left: microscopic picture; right: arrangement of
tetrahedral building blocks. From Ref. [6].

Several other multiaxial threedimensional and reproducible patterns
have been observed under natural conditions and there is little doubt

" that they could be produced artificially. To mention just one more
example, we refer to the Arlt’s! patterns o and B; till now they have
been observed only in ceramic grains but very probably they could be
created in crystals under properly designed external forces. Again, in
order to deliberate about their properties, the symmetry analysis would
be the first step to take.

Indeed, regular domain systems can offer unexpected symmetry
properties. Thus, for instance, the well known Hallbach array of
magnets with asymmetric distribution of magnetic field can have a
simple analogy in thin ferroelectric plates containing a regular system
of 90° domain pairs. While in the latter case, because of the existence of
free charges, we do not expect pronounced external depolarizing field
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effects, macroscopic properties of the array could offer new applicable
aspects.

3. DOMAIN-AVERAGE-ENGINEERED FERROIC SAMPLES

In contrast to the previous cases, in domain-average-engineered
samples of ferroic crystals the specimen is subdivided into a very large
number of domains, representing just p < v domain states. Such
situations can be achieved by cooling samples through their phase
transition temperatures under properly oriented stresses, electric fields
or their combinations. The geometry of domains is irregular. The
sample’s response to external fields is roughly described by tensorial
properties averaged over all involved domain states. Thus, e.g. for the
piezoelectric response we can write in the zeroth approximation

- 57 7 _14&4
E=dpky, dyo=— T dpv®.
V a=1

Here V() denotes the volume occupied by the domain state a.

In recent years, Park et 2l | Yin and Cao!'” and other authors
considered a case of this character to discuss piezoelectric properties of
PZN-PT single crystals poled along one of the {001} directions.
Assuming that the material went through the phase transition from G =

m3mto F = 3m, the poling along [100] supports the coexistence of four
domain states with spontaneous polarization along the directions [111],
[1T1],[117] and {11 1}, with equal probability. In this statement, it is
assumed that the domain wall orientation aspects (e.g. mechanical
compatibility) can be neglected. In fact, in samples of ferroelastic
crystals strictly speaking, only one set of mechanically permissible
parallel domain walls is allowed!'"! while in real samples walls of
various orientations coexist connected with additional elastic strains,
paid by increased elastic energy.

The symmetry aspects of domain—average—engineered samples can
be discussed in a general way. The task is to determine the average
point symmetry H, i.e. the symmetry of the subset of domain states
contained in the multidomain sample. This was addressed by Fousek et
al.'"? and the procedure can be facilitated by the use of the computer
programme of Schlesmann and Litvin.[**]

As an example, in Fig2 we reproduce“z} the average symmetry
groups H of six selected subsets of domain states (out of 13 leading to
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different s:mmetries F) which arise in the phase transition specified
above (here u = 8). States are represented by self-explanatory numbers
and dots indicating the directions of Ps vectors.

Representative Subset
subset _| symmetry H
{}] 3xyz m‘gy
i 3] Myy Mgy, 2,
[136] , Myy
[1356] 2z,
[1368] 4mamy,

FIGURE 2 Examples of subsets of domain states corresponding to
the transition m3m — 3m and their symmetries.

Taking into account the distribution of polar vectors and
corresponding strain tensors, one can determine which external forces
should be applied in order to obtain any of the domain-average-
engineered systems. The trivial example is the subset [1] produced ‘ogr
the electric field E along [111]. The subset [1368], discussed® %!
before, will be produced by the field along [001] while the combination
[15] requires the application of a uniaxial stress along [111]. The subset
[13] calls for the application of both electric field along [001] and
uniaxial stress along 1 10].

In addition to the applied fields, electrical or mechanical, there are
other approaches which can eliminate particular domain states in a
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given ferroic material. The stimulating example is based on chiral
dopants. Keve et al.!" showed that doping TGS with L-a-alanine
prefers just one of the two domain states with antiparallel Ps. Zikmund
and Fousek!!>!¢l generalized this approach and showed that chiral
substitients can reduce the number of domain states by a factor of two
in a number of ferroic species.

It is understood that in the mentioned approaches we leave behind
the problems of domain coexistence connected with their mechanical
compatibility. It seems obvious that domain average engineering can
succesfully lead to formation of crystalline systems with new desired
properties in particular in crystals where the domain size is small.
Crystalline systems exhibiting tweed microstructures similar to those
observed in La-modified lead titanate!'”].or pL7ZT!® might serve as
candidates for this approach. ‘ ‘

4. PHASE- AND- DOMAIN-AVERAGE ENGINEERED FERROICS

The domain-average-engng concept can be generalized to systems in
which the prescribed domain states represent two or more ferroic
species. Such multiphase situations occur in PZT ceramics near the
morphotropic boundary and originate!™” in concentration gradients as
well as in the independent nucleations of the ferroic phases since the
transition is of the 1st order. It appears that PZN-PT single crystals with
- a pronounced piezoelectric response contain blocks of both tetragonal
and rhombohedral symmetry‘gg]. In the basic approximation, the
piezoelectric coefficient of a properly poled sample is then described by

7. =Ll & @@ |, 1| 2 5 5
diy =— al’'v _— aiy’'v
o Vl[az=l ik +Vz ﬂz=l ik *

+ Ad i (walls) + Ad ik (phase bndrs)

where 1 and p2 are numbers of domain states represented in the phase
1 and 2, resp., after poling. The high piezoelectric response of PZN-PT
single crystals originates in the combination of intrinsic coefficients
d® qP

gk > Zijk
of domain walls and phase boundaries. The question what role is played
by any of these contributions is stil] to be solved.

as well as in the extrinsic contributions due to the motion



ENGINEERING MULTIDOMAIN SAMPLES [389p1

When addressing the problem of average symmetries of phase-and-
domain-average-engineered samples one can follow®! a similar
approach as mentioned above. Consider that two species coexist,
namely m 3 m—3m and m3m—4mm. It can be shown that when poling

along principal directions, i.e. E || [001] or E || [011] or E || {1y,
regions of the two species differ in the systems of Ps vectors but are of
the same averaged symmetries 4mm, mm2 or 3m, resp.

It has to be stressed that in both domain-average enginnered and
phase-and-domain-average engineered systems, electrical and
mechanical compatibility conditions play, in the energy evaluations, a
significant role. It is beyond the scope of this presentation to discuss
these problems in detail and the subject will be addressed in another
paper.

5. DOMAIN-WALL-ENGINEERING

In the last considered case, the thickness of domain walls is finite and
the specimens exhibit large wall density. As before, the representation
of specific walls can be influenced by external forces. In such domain-
wall-engineered samples the characteristics of static walls can play an
essential role in the averaged macroscopic properties.

It was predicted by Walker and Gooding!® that Dauphiné domain
walls in nonpolar quartz can carry a dipole moment and this was later
demonstrated experimentally by Snoeck et al®! in the
incommensurate phase of SiO,. In fact it is easy to demonstrate this
possibility for ferroelastic walls. If in the free energy function the
invanant s4(3e;/0xy)E) is allowed by symmetry, a ferroelastic wall will
carry polarization

e
By = g —L.
é’xk

Here the pu-tensor describes the flexoelectric effect. As an example,
consider the species m3m — 4/mmm represented by crystals of SrTiOs,

or CsPbCl; and the species m3m — 4mm describing the properties of
BaTiOs. In both cases, ferroelastic walls (90° wall in the latter case) are,
by symmetry, allowed to carry polarization

Py =Py =(u111 —
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this is demonstrated in Fig. 3. Symmetries of nonferroelastic domain
walls from which their possible macroscopic properties can be
envisaged have been discussed by PHvratsk4 and Janovec®

—>
x

FIGURE 3 Due to flexoelectricity, domain wall separating two

ferroelastic domains of species m3m — 4/mmm or m3m — 4mm
can carry polarization represented by the arrow.

Should macroscopic properties of domain walls play a non-
negligible role in the properties of a ferroic sample, they have to occupy
a sizable volume. Realistic values of domain width and domain wall
thickness are diomein = 1 to 10 pmand £, =3 nm, resp. Suppose that the
required relative volume occupied by domain walls is 10% snd that
there so no way how to increase the wall thickness. Then we look for
methods how to reduce the average domain width to about 30 nm, i.e.
how to increase the wall density 30 times or more.

It appears that there is a significant number of experimental methods
which could address this problem. Here we mention in passing only
some of those which might be considered. The density of defect-
induced order parameter gradients could be increased at crystal
growth®. The size of AFM-written domains® could be further
reduced, their density increased. Attempts to freeze-in high density
tweed structures! in some ferroelastics close above Tc or high density
pattern of discommensurations in modulated phases close above the
lock-in  temperatures®” appear attractive. Fixing photorefractive
gratings by domains™" in ferroelectrics with small Ps (small defect.



ENGINEERING MULTIDOMAIN SAMPLES [391)/179

assisted nucleation energies to produce domains in real time) looks also
promissing.

6. CONCLUSIONS

Till now, the field of domain geometry engineering has been
succesfully developed and applied to ferroics representing five species
of ferroelectrics and one species of ferroelastics, all with two domain
states. Such specimens proved to be competitive in the field of
nonlinear optics and promissing in the field of ultrasonic generation and
detection. But much more complex domain systems are obtainable and
have not yet been considered and investigated.

Two new areas of research appear to be very promissing. Domain-
and phase-average engineered systems offer increased values of
macroscopic properties, probably strengthened by domain wall and/or
phase boundary induced motions. We still miss detailed data about the
real structure of existing compounds like PZN-PT as well as theoretical
analysis of multiple domain states compatibility, the more so for
multiple phase systems. Domain-wall engineered samples with high
density of walls also promise a new interesting research and application
area. At present, particular systems useful in selected applications could
be specified and methods to produce high density domain patterns
investigated experimentally.
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Abstract

Multidomain samples of ferroics (ferroelectrics, ferroelastics, and related
materials) with fixed geometrical distribution of domains can offer new
macroscopic properties required for particular applications. Two extreme cases
of such applications are defined. In domain-geometry-engineered samples
of ferroic crystals, the spatial distribution of domains and thus the spatial
distribution of tensorial properties is tuned to correspond to the k-vectors of
applied electric, optical or acoustic fields. For a given wavelength, the size,
geometry, and distribution of domains give rise to a qualitatively new kind of
response specified by the symmetry of the multidomain system. In domain-
average-engineered samples of ferroic crystals, the specimen is subdivided
into a very large number of domains, representing 1 domain states where u
is smaller than the theoretically allowed maximum number, and forming a
regular or irregular pattern. Its response to external fields is roughly described
by tensorial properties averaged over all of the domain states involved. The
effective symmetry of the domain-average-engineered system is given by 2
point group H and we show how it can be determined. As an example, all
groups H are specified for domain-average-engineered samples which can
arise in a material undergoing the phase transition with symmetry change from
m3m to 3m.

Ferroic materials (and here we concentrate on non-magnetic materials, i.e. on ferroelectrics,
ferroelastics, and higher-order ferroics) play an essential role in a number of technical appl-
ications. In some of them, dynamic domain processes are essential (e.g. thin-film memories,
electron emitters) while in others the static distribution domains in the sample play the crucial
role. Inthis contribution we concentrate on the latter case and wish to specify a clear distinction
between two kinds of such static multidomain system.

‘We have in mind materials undergoing a structural phase transition from the parent phase
of point group G into the ferroic phase of symmetry F C G (such a material is referred to
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as belonging to the species G — F). This leads necessarily to the possibility of a coexistence
of v domain states [1]; v = |G|/|F| where |A] is the order of the group A. Assuming that
domain walls are of negligible thickness compared with the size of the domains, there are two
different ways of specifying—and utilizing—properties of a multidomain sample with a fixed
distribution of domains; we propose to refer to them as domain geometry engineering and
domain average engineering, respectively. It is the purpose of this contribution to give their
definitions and in particular to specify symmetry properties of domain-average-engineered
multidomain samples.

First, we consider domain geometry engineering. Consider a multidomain sample for
which the geometry of the spatial distribution of domains and therefore that of the tensoriat
material coefficients is specified. Macroscopic responses of such samples to external fields
(forces) of defined frequency are determined by this distribution. If the applied fields are
static, the response of a multidomain sample is primarily determined by the spatial distribution
of tensorial properties (domains) and of the applied field, and codetermined by the boundary
conditions along domain walls. (Only in cases of the simplest geometry of domains, namely
a single system of parallel domain walls in the case of ferroelastic species, can the latter be
eliminated.) As an example, consider a multidomain piezoelectrically active sample. The
spatial distribution of strain is

gjk(r) = diji(T) E; (7) (la)
dije(r) = df5) £ (r) (16)

where d;ji stands for the piezoelectric tensor, the factor f @(r) = 0 or 1, and & denotes
the domain state: @ = 1,2,..., s with < v. Domain geometry engineering related to
dynamic external fields is of particular interest. The k-vector of the applied fields defines
the wavelength whose magnitude is chosen to be appropriately related to the size of domains
and whose direction is correlated with the domain geometry. For a given wavelength, the
size, geometry, and distribution of domains give rise to a qualitatively new kind of response
specified by the symmetry of the multidomain system. In the example specified above, we
expect the presence of new piezoelectric resonance frequencies. It was this case which was
suggested by Newnham et al [2], offering new resonance modes of a two-domain sample.
Recently, more involved multidomain piezoelectric systems were suggested and realized [3]
in crystals of LINbO; and LiTaO;. Referred to as acoustic superlattices, they can be used to
generate and detect ultrasonic waves with frequencies in the range up to several hundreds of
MHz. Another example, which has received unusual attention, is quasi-phase-matched optical
multipliers. When the conventional phase-matching condition (n2,, = n,) cannot be realized
in a particular material because of unsuitable dispersion of refractive indices, often a quasi-
phase-matched system can be constructed which offers a high integrated non-linear optical
response leading to frequency doubling [4]. This requires that a periodic domain pattern
be fabricated with a period twice the coherence length /.. Such domain-shape-engineered
systems are now widely used. An even more intricate geometry-engineered domain pattern has
been designed [5] in which two geometrically different building blocks A, B, each containing
two domains with antiparallel spontaneous polarizations, are arranged to form a Fibonacci
sequence. This leads to the possibility of second-harmonic light generation simultaneously
for several optical frequencies.

While domain-geometry-engineered systems have been repeatedly realized and theor-
etically analysed, the alternative approach to studying and utilizing multidomain ferroic
samples with static chaotic distribution of domains has only recently become extremely
attractive. By the term domain average engineering we mean a situation in which the ferroic
sample is subdivided into a very large number of domains, representing 4 domain states where
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# < v, and forming a regular or irregular pattern. Ideally, the domain size is expected to be
much smaller than the wavelength of externally applied fields. Here, in contrast to the case
for domain shape engineering, the spatial distribution of tensorial material coefficients is not
defined or is irrelevant. The response of the sample can be to some approximation described
by tensorial properties averaged over all domain states involved. Considering, as an example,
again a sample consisting of piezoelectrically active domains, we expect for the multidomain
sample

Ejx =5;;k£" (2a)

dijp = — Z ave <. 2b)
a—-l
Both equations (1), (2) can be easily generalized for tensors of higher order.

Recently, a case of this character was considered [6-8] to allow discussion of piezoelectric
properties of PZN-PT single crystals poled along one of the {001} directions. Assuming that
the material went through the phase transition from G = m3m to F = 3m, poling along
[100] supports the coexistence of four domain states with spontaneous polarization along
the directions [111], {Ili} {III] and {1113 with equal probability. In this statement, it
is assumed that the domain wall orientation (i.e. mechamical compatibility) aspects can be
neglected. In fact, in samples of ferroelastic crystals, strictly speaking, only one set of
mechanically permissible parallel domain walls is allowed {9] while in real samples walls
of various orientations coexist connected with additional elastic strains, paid for by increased
elastic energy [10].

We now discuss the symmetry of domain-average-engineered samples in which the
volumes of the domain states represented are identical, i.e. V(&) = V/u. Such situations can
be achieved by cooling samples through their phase transition temperatures under properly
oriented stresses, electric fields or combinations of these. We introduce 2 classification of
domain-average-engineered ferroic samples and determine their average point symmetries.
This average symmetry is taken to be the symmetry of the subset of domain states contained
in the multidomain ferroic sample.

Consider the phase transition from Gto F. The symmetry analysis is based on the coset
decomposition of the point group G with respect to its subgroup F, i.e.

G=F+gmF+gnF+---+g,F

where the elements g; are the coset representatives of the decomposition and g; = 1. We
denote the v domain states which may arise at the transition as §i, S5, ..., S,. The symmetry
groups F; of the domain states and the relative orientations of the domain states and the:r
polarizations P; are all determined by the coset representatives, ie. Fy = F, F; = g; ;i g! .
Si = giSy,and P, = g P,i = 2,3, ..., v. The closure of the group G under multiplication
implies a permutation of the cosets c-f thc coset decomposition and in turn a permutation of
the domain states S; under elements g of G. The action of an element g of G on §; is defined
as g5; = ggi51 = g; f§1 = g;81 = §;, where f is an element of F, and the domain state §;
is transformed by the element g into the domain state S;. The action of an element g of G on
a subset of domains is denoted by g{S;, S, ..., S} = {£51, 852, - .., g5}

Two subsets of domains {S, Sz, ..., S,} and {S}, 5, ..., §,} are said to belong to the
same class of subsets of domains if there exists an element g of G suchthat g{$,, $,..., S,} =
{851,852, ..., 8Su} = {81, 83, ..., ;). The symmetry group H of a subset of domains
{81, S2,..., S} is defined as the group of all elements g of G which leave the set invariant,
ie. g{81, Sz, ... Su) = {81, 52, ..., S.). The group H represents the effective symmetry of
the domain-average-engineered system consisting of the subset of domains {5}, Sz, ..., S.}.
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As an example, we consider the phase transition from G = m3mto F = 34y2m3zy. Here
v = 8. The indexing of the domain states, the corresponding coset representatives of the
coset decomposition of G with respect to F, the symmetry groups, and the corresponding
polarizations in each domain state are given in table 1.

Table 1. Domain state index, coset representative, symmetry group, and polarization.

Indexi  Cosetrepresentative g;  F; = g; Fig] ' p= &P

1 1 3eemsy (A, A, A)

2 2, 32ym5: (A, —A, —A)
3 2, 3ryzmzy (A, -4, A)
4 2, 3xjzmsz: (—A, A —A)
5 1 3eyemzy (~A, -4, —A)
6 ny 3iyamyy (—A, A A)

7 m, 3xvzmsy (A A, -A)

8 my 3e5ams; (A, —A, A)

All subsets of these domain states have been classified into classes as defined above. In
table 2 we list one subset of domain states from each class. Each subset is denoted by listing,
between square brackets, the indices of the domain states contained in that subset, the indices
having been given in table 1, e.g. the subset (S;, S3, Ss) is denoted by [135]. In the right-hand
column is the subgroup H of elements of G which leave the corresponding subset invariant.
This table, in fact, represents the list of domain-average-engineered systems which can arise
in a material undergoing a phase transition from m3m to 3m.

Table 2. Representative subsets of domain states for the species m3m - 3m and the subgroups of
m3m which leave them invariant,

Representative subset ~ Symmetry H of the subset

[1) or [2345678) 3eyemsy
(13 or [245678) Maymzy2,
(15 or [234678} 3eyemsy
[16] or [234578] Mems,2y,
[123] or [45678] 3xyeMxs
[135] or [24678] mgzy

[136] or [24578) My
[1234} 43m
(1235} mz,
{1238] 3x52msz,
[1356] 2%

(1357} myymzym;
[1368) 4;memyy

In figure 1, for each subset listed in table 2, we schematically represent the array of domain
states and their polarizations associated with the domain states of each subset. Each domain
state is denoted by a heavy dot at a corner of the cube. This represents a polarization from
the centre of the cube to that comer—that polarization given in table 1 associated with the
corresponding domain state. Subfigure [1] denotes the single-domain state with polarization
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/ 123] 11233]

[1238] 113561’/. 11357}

: [1368§ ;

Figure 1. Graphical representation of the subsets of domain states whose symmetries are specified
in table 1. Points at the cube vertices represent spontaneous polarization vectors; the origin is in
the centre of the cube. The numbering is that of the indices of the domains and polarizations given
intable 1.

in the [111] direction. The figure denoted by [1368], e.g., denotes a multidomain sample in
which the following polarization vector directions are equally represented: [111], i1 11, 11113,
and [111]. The corresponding symmetry groups of all these multidomain systems are listed,
as already pointed out, in the right-hand-side column of table 2.

Taking into account the distribution of polarization vectors and corresponding strain
tensors, one can determine which external forces should be applied in order to obtain any
of the domain-average-engineered systems listed in table 1. The trivial example is the system
[1] produced by the electric field E along [111]. The system [1368], discussed above (see
references [6-8]) will be produced by the field along [001] while the system [16] requires the
application of the field along [011]. The combination {15] requires the application of a uniaxial
stress along [111] while the system [13] calls for the application of both an electric field along
[001] and a uniaxial stress along { 1101

It is understood that in this symmetry approach we leave behind problems of coercive
fields and stresses as well as, as already mentioned, problems of domain coexistence connected
with their mechanical compatibility. It seems obvious that domain average engineering can
successfully lead to the formation of crystalline systems with new desired properties, in
particular in crystals where the domain size is smail.

Each of the methods of domain engineering specified above can open a new vista of
materials research possibilities in the area of ferroic materials and lead to multidomain
assemblies with new desired properties.
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Abstract. Current solid state actuators are briefly compared to traditional actuator
technologties to highlight the major need for enhanced strain capability. For the
ferroelectric piezoelectric polycrystal ceramics, the balance of evidence suggests a
large entrinsic contribution to the field induced strain from ferroelectric-
ferroelastic domain wall motion. Here-to-fore the intrinsic single domain
contribution has been derived indirectly from phenomenological analysis. Now,.
new evidence of a stable monoclinic phase at compositions very close to the MPB
suggest that the previous assessment will need to be revised.

Actuator behavior in the new lead zinc niobate-lead titanate (PZN:PT)
single crystal shows most unusual anisotropic behavior. For 111 oriented field
poled crystals in the rhombohedral phase normal low induced strain is observed.
For 001 field poled crystals however massive (0.6%) quasi-linear anhysteritic
strain can be induced. Since the 001 oriented field in the thombohedral phase can
not drive ferroelastic domain walls it is suggested that the strain must be intrinsic.
The suggestion is that it is due to an induced monoclinic phase in which the Ps
vector tilts.under increasing field up to more than 20° from 111, before the vector
switches to the tetragonal 001 direction. Such a polarization rotation mechanism
has also been suggested by Fu and Cohen [1]. Calculations of induced single
domain strain using measured electrostriction constants agree well with observed
behavior.

Recent measurements by Park et al [2] and Wada et al [3] on single crystal
BaTiO; show strongly enhanced piezoelectricity at temperatures near the
ferroelectric phase transitions. Of particular relevance is the inverse experiment
forcing the tetragonal over to the rhombohedral phase with high 111 oriented
field. From this result it is suggested that both cubic and dodecahedral mirrors
participate in the reorientation through orthorhombic to the rhombohedral state
giving rise to different value of the induced d53 at different field levels.

CP335, Fundamental Physics of Ferroelectrics 2000: Aspen Center for Physics Winter Wkshp., adited by R. E. Coben
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INTRODUCTION

Characteristics of stress levels, strain capability and efficiency for a number of
actuator systems are summarized in Table 1. Traditional electromagnetic, pneumatic and
hydraulic systems have high efficiency good stroke (strain levels) and adequate force.
They are however bulky, rather slow, and require extensive backup generator equipment.
Solid state electrical piezoelectric, electrostrictive and phase switching actuators clearly
have adequate force, tolerable efficiency, however the stroke permitted by induced strain
levels is miniscule. These materials are still important as the actuation can be very fast,
inertia is low and compact systems can be engineered, however there is still a major need
for enhanced strain capability.

In this paper, the mechanisms responsible for strain in the polycrystal ferroelectric
ceramics will be discussed. Currently the balance of evidence points to a major
contribution from ferroelastic domain wall motion particularly in the soft PZTs, but the
discovery of a new monoclinic phase, just at the critical morphotropic phase boundary
composition requires a re-assessment of the intrinsic contribution to response. Evidence
from the new lead zinc niobate:lead titnate (PZN:PT) single crystals suggests that the
ultra high strain in 001 field poled crystals may be dominantly intrinsic involving the
field induction of a monoclinic phase in which P is strongly tilted in the dodecahedral
mirror plane before finally switching to the 001 polar tetragonal form. Recent
experiments on BaTiO3 where the inverse experiment, forcing the tetragonal over to
rhombohedral symmetry by high (111) oriented E-field at room temperature lends further
support for a monoclinic mechanism for the switching, but now involving both cubic and
dodecahedral mirrors.

Polarization and Strain Mechanisms

For the simple linear nonferroelectric insulator the induced deformation under
electric field may be described by

Xjj = St Xjj + dmifEm + MmniEmEn W

where x;j are components of induced strain, Xj; components of applied stress Ep, Ep
components of electric field sjjy; the elastic compliance, dpy;; the piezoelectric tensor and

Mmnij the electrostriction coefficients. Obviously if the dm;j are non zero, in the absence
of stress

Xij = dmg'jEm (2)
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TABLE 1. Salient Features of Traditional and Solid Siate Actuators -

TRADITIONAL TECHNOLOGIES

Stress (MPa) Straim Efficiency
Electromagnetic 0.02 0.3 90%
Hydraulic 20 . 0.3 80%
Preumatic ' 0.7 0.5 90%

SOLID STATE ACTUATORS

Stress (MPa) Strain i Efficiency
Shape Memory Allovs 200 01 3%
Piezoelectric 33 0.002 0%
Electrostrictive 50 0.002 30%
Phase Switching 50 0.004 . ?
Electroceramic
Electrostrictive 0.1 0.10 20%
Polyurethane
Contractile Polymer 03 0.3 30%
Muscle 035 6.2 30%

which is the piezoelectric actuation function and if the dyyj; are zero by symmetry

X = Mm}zgff n 3)

and the system will be electrostrictive.

In a polycrystal ensemble, as for the randomly axed ceramic, the systern is much
more complex. With any symmetry in the crystallites (fig. 1a) the random axial
arrangement will introduce two infinite fold rotation axes (ec) in the macro-ensemble
symmetry wiping out all piezoelectricity. One of the few way out of this dilema is to
consider a ferroelectric crystallite where in the ferroelectric state spontaneous electric
polarization is distributed in domains with different equivalent orientation states that can
be reoriented by an external poling field (fig. 1b). The remanent polar vector drops the
macro-symmetry to conical (eem) which is piezoelectric with non zero d3| =ds3s, d33, di5
=da4.

All practical polycrystal ceramic actuators use compositions in the lead
zirconate:lead titanate (PZT) solid solution system (fig. 1c). The reason for the
infatuation with PZT is the near vertical (morphotropic) phase boundary close to the
52:48 Zr/Ti cation ratio, separating tetragonal and rhombohedral ferroelectric phases.
Qualitatively two clear advantages stem from working with compositions near this
boundary, and this is where most practical systems are pitched.
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FIGURE 1. Important features in piezoelectric polycrystal ceramic materials.



Firstly, the MPB is a first order phase change, so that in the co-existence region for the
. two phases it is possible in the poling process t© make use of 14 domain orientation states
(fig. [d) leading to more complete poling. Secondly, for properly chosen compositions
one can stay close to the phase boundary over a wide temperature range and use its
destabilizing influence to enhance the intrinsic polarizability of the single domain states.

From these basic advantages stem two fundamental problems in understanding the
behavior. Firstly, what is the balance berween intrinsic single domain and extrinsic
contributors to response: and secondly, what exactly is the nature of the dominant
extrinsic contributor.

In the randomly axed polycrystal ceramic, ferroelectric domain wall motion is
essential to permit the induction of swong remanent polarization essential for
piezoelectricity. For the quasi-reversible behavior working about this induced remanent
polar state the question is to what extent are ferroelastic:ferroelectric wall motions the
primary exirmsic contributor to both dielectric and piezoelectric response.

No practical PZTs are in fact pure lead zirconate titanate solid solutions, all are
modified by aleovalent cation additions (fig. 2). We speak of excess charge cation added
or donor doped sott PZTs, and of charge deficient cation or Acceptor doped hard PZTs.
The terminology “hard” versus “soft” is derived from magnetism and clearly implying
difficuit or easy domain wall motion as in the magnetic counterparts. For the hard PZTs
however, there is compelling evidence [4,5], that stabilization by weakly mobile oxygen
vacancy:defect dipole pairs is of the whole domain not just the wall. A mechanism that
has no counterpart in magnetism but does however indirectly make the walls more
difficult to move.

In soft donor doped PZTs, there is very strong evidence for enhanced extrinsic
response in both dielectric and piezoelectric behavior, however evidence that it is
associated with domain wall motion is indirect. It is clear that at fields well below the
coercivity, the response is hysteritic [6] and can be well described by the Rayleigh law
[7] suggesting a domain wall origin. There is however also evidence from transmission
electron microscopy that the donor dopants tend to break-up the normal domain structure
leading to tweed like and micro-polar relaxor like structures [8].

Earlier a rather complete phenomenology has been presented for the whole PZT
family [9-13] from which single domain intrinsic values can be dervied for both
tetragonal and rhombohedral phases adjacent to the MPB and averaged values for
permittivity and piezoelectric response derived. It was on this basis that some 80% of
dielectric response in hard PZTs, but only of order 30% of response in soft PZTs was
predicted to be intrinsic (fig. 3).

Very recently the whole basis for evaluating both contribution to response has been
changed by the discovery using very precise x-ray analysis [14,15] of a new monoclinic
phase just on the rhombohedral side of the MPB (fig. 4). In this phase, the axial
components of spontaneous polarization Ps are -

Pi=Pi=0 pPiz0 buw piz P3 ' _ ()




NbyO5
Ta0Os
WO;

BiyO3
Sby053
LayO3

L

Soft PZT

W

DONOR ADDITIVES

PbNbyOg
PbTa30¢

Wall Motion Promoters

P& &
— W)

593 pC/N
273 pC/N
195°C
3.450
0.69

0.02

6 Kv/cm

(b)

(c)

ACCEPTOR ADDITIVES
Fe; 05
AlO3
Cr03
MnO5
MgO
NiO

Wall Motion Inhibitors
150 pC/N
60 pC/N
350°C
1,000
0.52
0.004
15 Kv/cm

FIGURE 2. (a) Typical polarization and strain curves. (b) Donor and Acceptor Dopants.

(¢} Dielectric and Piezoelectric Parameters



30001, \ros domed 227 (Soft P KMz /-
Fax0z doped PZT (Eard)
Sbz0z doped PZT {Saitd /-

P o0

© 3 ] 11
[ o NGO doped PZT (Hard)
l 2000
|

Nietectrle Canstant (K}

1000

PHENCMENQLOGICAL

o RSP SR ; I
o] ICo 200 ) 3C0

TEMPERATURE (K)

FIGURE 3. Dielectric response for Soft and Hard PZTs vs Temperature {4.2K to 300K)
intrinsic response derived from Phenomenological Theory.

PbZr, TiO,

800 ——r— T T
P

c

O Jaffeetzl
800+ MPE B E-F,

400+ R
3k
‘O\ : T .
200+ ; -
5

8] s - M
35 40 45 . =0 55 &0

X(%TH)

b

FIGURE 4. Modilied PZT phase diagram after Noheda [2].
The open symbols represent the PZT phase diagram after Jaffee et al.
Note: The temperature axis is in degrees K not celcius as in the original studies.




The polar vector lies within the dodecahedral mirror plane of the prototype m3m and
there are 24 orientation states for this species. From symmetry, the transitions
rhombohedral 3m « monoclinic m and tetragonal mm 2 « monoclinic m may be either
first or second order.

The presence of this newly discovered phase does require a revision of the
phenomenology, as in the earlier treatment all phases other than tetragonal and
rhombohedral were chosen to be metastable in the composition range of the MPB.
Similarly the possible extrinsic contributions to response now need further consideration.
The possibility for the E-field to drive phase boundary motion of a weakly hysteritic first
order 3m <> m or 4mm ¢ m phase change could contribute here-to-fore unimagined
extrinsic response that could mimic domain wall motion but contribute very strongly to
elastic strain and piezoelectricity. Either intrinsic or extrinsic contributions from this very
narrow insert of monoclinic phase could explain the very sharp peaking of k35 near the
MPB that is evident in pure PZTs and has been most difficult to explain on earlier
theories.

Alternative Single Crystal Systems

The complexity of the elasto-dielectric behavior of the polycrystal PZTs highlight
the need for single crystal and single domain studies to properly explore the phenomena
in lead based perovskite structures. PZT has proven markedly intractable for crystal
growth, but more recent studies of the lead zinc niobate:lead titanate PZN:PT, and lead
magnesium niobate:lead titanate (PMN:PT) have yielded “respectable” crystals for
compositions close to the pseudo-morphotropic boundaries between rhombohedral and
tetragonal phases in both systems [16,17,18].

Dielectric and piezoelectric properties have been well characterized [19,20] and the
massive anisotropy in response between 111 and 001 E-field poled crystals in the
rhombohedral phase underscored. The piezoelectric d3; > 2000 pC/N, k33 > 92%,
€53 > 35,000 for 001 E-field rhombohedral phase crystal at composition close to the MPB
are of strong practical interest. Of major concern here is the actuator performance where
it has been shown that in 001 field poled PZN:PT strains up to 1.7% can be induced at
high fields (fig. 5a).

There is good evidence that at the highest field Jevels the crystal is switched over
into the tetragonal phase through a field induced first order phase change that is
necessarily hysteritic. Of special interest is the lopg quasi-linear anhysteritic strain, up to
0.6% (fig. 5b) and polarization change 10 pc/cm” (fig. 5c) that can be induced by fields
up to 60 Kv/cm.

It is suggested that the sequence of phase changes induced by the 001 high E-field
1s as in fig. 6. In the virgin state, the crystal is a relaxor with presumable a largely frozen
rhombohedral nano/micro domain structure (fig. 6a). On first poling with 001 oriented
field the P, which is almost exactly l/ﬁ of the rhombohedral states, i.e.
111,111 111, and 11 oriented polarizations have been induced (fig. 6b). Note that this
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FIGURE 5. Actuator behavior of 001 electric field poled rhombohedral PZN:PT single crystal.

structure requires a high concentration of charged walls, and gives rise to a domain
averaged tetragonal 4mm macro symmetry. Since the high 001 field will change the
energy of each of the 4 symmetry equivalent domains in the same way, there is no
driving force to move the ferroelastic walls between the remaining domain states.
Obviously the high field will induce a tilting of the Ps vector of the domain into the

appropriate dcdecahedral mirror plane givng rise to monoclinic domain states (fig. 6¢) in
which

N
b

=0 2%0 P3>Pi (5)

fat.a

=P

Again the monoclinic domains will average to macro 4mm symmetry. Eventually
one expects the field to induce a true tetragonal monodomain state in which macro and
micro symmetries coincide (fig. 6d).

An interesting question is whether the proposed sequence of changes can account
‘for the observed large strain changes without extrinsic domain wall contribution.

Since intrinsic shape changes are electrostrictive it is only necessary to know the
total polarization and the electrostrictive coefficients Qq, Q12, and Qq4. For m3m, it is
simple to show that the volume strain sy in all possible ferroelectric phases is given by

v= (911 #2013 )Plora 6)
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FIGURE 6.

Sequence of states in high 001 field poled rhombohedral PZN 95.5 PT 4.5 under increasing 001 E-field.

Measurements by Park [20] show that over the linear strain range up to 35 Kv/cm
the volume change in PZN 0.95.5 PT 0.045 is less than 0.05%. Taking as a first
aproximation sy = 0, the polarization vector is just rotating under field and from fig. 5¢
the tilt angle in the induced monoclinic phase can be deduced and is presented in Table 2.

Taking Qp; from the total strain and total polarization in the induced tetragonal

monodomain state

Q1 = 0.0535
taking Qp = 0 then yields
Q. = 0.0267.

In the field induced monoclinic phase

s1=(Q;;+0Q;2)P; + Q2 P3
s2=(Q11+Q,2)P7+Q2P] 7
s3=(Q;+P35)+2Q,,P]
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TABLE 2. Tilt angle and polarization components under increasing 001 E; field in rhombohedral
PZN:95.53 PT 4.5 single crystal. Tilt is measured from the 001 axial direction.

Field Polarization P3 , . Polarization Py
kViem : ;_u:fcm: Angle 8 _mc:/cm2
5 2738 50.1 347
10 29.8 165 22.21
13 3td : 434 . 21.04
20 ' 33 40.34 19.82
35 343 375 18.64
30 35.6 34.6 17.42
35 36.75 31.9 16.19
40 37.85 29.1 14,87

From equation 7 and the known P; and Pz, components of the strains sq, s2, 53 can
be computed for the induced monoclinic phase in the anhysteritic range up to 35 Kv/cm
E3 field (fig. 7). Clearly the intrinsic strains in the monoclinic form are adequate to
describe the induced total deformation.
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FIGURE 7. Calculated intrinsic strain in the field induced monoclinic phase (a) S5 (b) Sy.




If this proposed explanation for high strain behavior is valid it should be expected
that other peroskite structure ferroelectrics would show high intrinsic strain effects at
temperatures close to phase boundaries. Strong enhancement of ds3 at temperatures
below but close to both rhombohedral/orthorhombic and orthorhomic/tetragonal phase
changes in BaTiO3 single crystals have been demonstrated [2]. Of particular relevance is
the study by Wada et. al. [3] of the inverse transition, i.e. tetragonal to rhombohedral in
111 cut BaTiOj3 crystal under increasing 111 oriented electric field. The sequence of
changes taken from their paper is depicted schematically in fig. 8. The 111 poling field
first induces 100, 010, and 00! orientation of Pg in the tetragonal state. Under this
condition for fields below 5 Kv/cm at 0.1 Hz a monoclinic phase is induced with intrinsic
dsz3 ~ 203 pC/N (fig. 8a).

At higher fields, the system becomes hysteritic and the family of 110, 101, and 011
orthorombic domain orientations is finally induced (fig. 8b).

A new linear regimen of strain is evident for fields up to 45 Kv/cm, again exhibiting
monoclinic symmetry, until the system moves by a hysteritic first order change to
rhombohedral symmetry (fig. 8c). It is interesting to note that the second llnear strain
range has a different slope corresponding to a d33 ~ 295 pC/N.

We suggest (fig. 8) that because of the closeness to room temperature of the
4mm/mm?2 change in BaTiO3, the polarization vector under 111 field first moves out into
the cube mirror (m)) catalyzing the change to mm2 symmetry, but then at higher field
must move in the dodecahedral mirror (m;) to achieve the rhombohedral orientation.
After achieving the rhombohedral state, it would appear the Py chooses to stay in the
dodecahedral mirror which connects directly to the tetragonal state. Since the two
monoclinic phases accessible from m3m are quite distinct this would account for the
different piezoelectric slopes measured in the experiment.

Since there is a2 very complete Gibbs Free Energy Function for BaTiO3 [21] it
should be a simple matter to do the full three dimensional energy plots, to calculate the
lowest energy trajectories for the polarization change and thus to verify the major role of
the EeP term in Energy for these “soft” ferroelectric perovskites.
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Conclusions

In polycrystal ceramic PZT piezoelectrics the current balance of evidence still
suggests a strong contribution to dielectric and piezoelectric responses from
ferroelastic:ferroelectric domain wall motion. New evidence of a stable monoclinic phase
just on the rthombohedral side of the MPB does however require revision of the earlier
thermodynamic phenomenology to describe the intrinsic single domain responses and
also contributes the possibility of previously unimagined new extrinsic contributions to
response. <

For the single crystal lead zinc niobate lead titanate at the 4.5% lead titanate
composition the very high linear anhysteritic strain induced by 001 oriented E-field is
suggested to be intrinsic and to result from the induction of a monoclinic phase in which
P, is substantially tilted from 111. In BaTiO; for the “inverse experiment” forcing
tetragonal to rthombohedral symmetry at room temperature it is suggested that with
increasing E-field Ps moves first in the cube mirror to orthorhombic, then in the
doecahedral mirror towards rhombohedral symmetry, but at very high field may chose to
accomplish complete switching in the alternative dodecahedral mirror.
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SYMMETRY AND ANTISYMMETRY IN ELECTROCERAMICS

Robert NEWNHAM and Eric CROSS
The Pennsylvania State University, University Park, PA, USA

- Many types of symmetry are utilized in ceramic art and in ceramic science. In
addition to the common mirror, rotation, inversion and translation symmetry
elements observed in crystals and textured ceramics, artists and engineers often
make use of the antisymmetry elements involved in color groups. We illustraté
the application of color symmetry in controlling the vibration modes in
ferroelectric and ferromagnetic ceramics prepared as spheres, hemispheres,
and rings conforming to black-and-white Curie groups.

SYMMETRY IN ART AND SCIENCE

While visiting the city of Kiitahya, one of the great centers for trad itional
ceramic tiles and porcelain products, we had the opportunity to view contem-
porary Turkish artwork. Islamic art has long been famous for its geometric
patterns, but we were especially fascinated with the porcelains made by Kervan
- - Chini, who incorporates many interesting symmetries into his pottery. The -
colorful dish shown in Fig. 1 contains a number of the symmetries and broken
symmetries observed in electroceramic materials and devices: polar symmetry,
chiral symmetry, symmetry of scale, quasisymmetry, the pseudosymmetry of
incommensurate phases, and the antisymmetric elements of color symmetry
groups.

Piezoelectric ceramics, pyroelectric glass ceramics, and certain function-
ally-graded ceramics have polar symmetry like that of a concave-shaped disk
(Fig. 2a). Chiral symmetry is present in the porcelain dish as well (Fig. 2b). The
leaf pattern of the flowers and the sleeping sheep near the edge are both
arranged in a counterclockwise fashion leading to handedness. Chiral phenom-
ena such as optical activity, acoustic activity, and the Faraday Effect are well
known in crystal physs{:s Symmetry of scale is important in all classes of
materials. The pattern in Fig. 1 violates the self-similarity principle introduced
by Benoit Mandelbrot to describe fractal geometry. Beginning at the center,
. the porcelain dish shows 5-fold then 9-fold, 10-fold, and 19-fold rotational
symmetry. Five-fold symmetry is characteristic of quasicrystals and the circle
possesses a cc-fold axis, one of Curie group symmetries found in textured poly-
crystalline ceramics. The change in symmetry with scale is illustrated in Fig. 2c.
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The symmetry of scale is an important one in many electronic systems
as component sizes become smaller and smaller. Current trends in multilayer
capacitors are shown in Fig. 3 and 4. The lateral dimensions in MLC chips are
now about 1 mm, approaching the limit for many of the pick-and-place
machines used in assembling circuits. Layer thicknesses and grain sizes are
also a concern. Ceramists are now testing BaTiO, MLCs with layers of 1 um
thickness which is pressing the limits of tape-casting technology. Particle sizes
are in the 0.1 um range which raises some fundamental questions regarding
size effects in ferroelectrics. In large grain size, say 1 pm and larger, each grain
contains many domains. The number of domains and the type of domain
walls change as grain size drops below a micron. Eventually each grain becomes
a single domain with profound changes in dielectric constant and switching
behavior. In the nm range the ferroelectric phase transition becomes diffuse
and the symmetry of BaTiO, appears pseudocubic. Size effects in primary
ferroics are illustrated schematically in Fig. 5. Dielectric constants drop
substantially for grain sizes less than 0.1 um.

Returning to the porcelain plate in Fig. 1, the outer portions of plate
provide an excellent illustration of pseudosymmetry or “almost” symmetry. In
the central leaf pattern there are 10 leaves and between neighboring leaves
are 10 flowers. Near the outside rim of the plate are red hearts which, at first
glance, appear to be in register with the 10 leaves and with the 10 flowers, but
such is not in the case. The artist has made a subtle change in symmetry with
only 19 hearts instead of 20 (Fig. 2d). Many ferroelectric and ferrimagnetic
oxides possess incommensurate structures in which the local polarization or
magnetization vectors are out of register with the lattice periodicity (Fig. 6).
These so-called incommensurate phases often exhibit unusual phy5|cal
properties because of their abnormal symmetry.

FERROIC CRYSTALS AND ANTISYMMETRY ELEMENTS

The symmetry elements discussed thus far are purely spatial trans-
formations such as mirror planes, rotation axes, and inversion centers. Spatial
symmetry elements are all that are required for the usual crystallographic and
limiting point groups, but additional symmetries occur in ferroic electro-
ceramics. These additional symmetries can be described by color symmetry.
The ceramic dish from Turkey possesses decagonal color symmetry in which
the flower rotates by 36° and changes color (Fig. 2e). In this paper we discuss
color groups and the antisymmetry elements found in ferroic ceramics with
complex domain patterns. The 10’ antisymmetry element in Fig. 2e belongs
to this type of color group.

More than a century ago, the basic relationships between symmetry
and physical properties were established by Neumann and the brothers Cu-
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rie, and systematized in Woldemar Voigt's monumental “Lehrbuch der
Kristallphysik.” (Velgt,‘§928) Using Neumann’s Principle, the symmetry
restrictions for piezoelectricity, magnetostriction, and other linear and nonlinear
tensor properties have been enumerated, and have led to the development of
 many types of sensors, actuators, and transducers. For single crystals, the
properties are governed by the 32 crystallographic point groups, and for
textured polycrystalline materials, we use the seven limiting groups first
described by Pierre Curie. In 1974 we extended these symmetry arguments to
ferroic crystals, laying out the symmetry changes involved in the phase
transformations leading to the hysteretic phenomena created by domain wall
motion (Newnham, 1974). There are, for example, 15 symmetry changes
consistent with pure ferroelastoelectric behavior in which adjacent domains
differ only in the orientation of third rank polar tensor properties. A “pure”
ferroelastoelectric does not exhibit any other primary or secondary ferroic
behavior (Newnham and Cross, 1974).

In crystals with long range magnetic order, the addition of a time reversal _
operator leads to the generation of the 90 magnetic point groups used to
describe ferromagnetic, ferrimagnetic, and antiferremagnetic substances (Birss,
1964). Introduction of the antisymmetric spin reversal operator makes it possible
to apply Neumann’s Principle to magnetic crystals and classify the symmetry
restrictions for magnetic properties such as magnetoelectricity, pyromagnetism
and piezomagnetism. All three of these cross-coupled phenomena are axial
tensor properties and since spin reversal corresponds to the reversal of an

axial vector, all three properties are strongly influenced by the antisymmetry
cperator

n this paper we introduce antisymmetry elements for other types of
ferre;c matena!s with movable domain walls. Ferroelectricity, ferroelasticity,
and the six types of secondary ferroics are also controlled by tensorial
antisymmetry operators (Table 1). For a ferroelectric, polarization - a polar
vector - is the key operator, since ferroelectricity is defined by polarization
- reorientation between symmetry related states. For a ferroelastic, the key
operator is strain - a second rank polar tensor - since ferroelasticity is defined
by strain reorientation between symmetry related states. For a ferrobielastic
secondary ferroic, the key operator is a fourth rank tensor, etc.

The procedure will adopt for introducing these antxsymmet'ry elements
is as follows. Each operator is combined with the spatial symmetry elements
of the 32 crystallographic point groups or to the seven Curie groups to gene-
rate a farmiy of antisymmetric graups analogous to the 90 magnetic point
groups. Having determined the relevant symmetries, Neumann’s Principle is
then applied to determine the polar and axial property matrices, enabling one
to predict the useful symmetries that will optimize the matenai for a given
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FIGURE 1 - A ceramic dish made by Kervan Chini which illustrates
many types of unusual symmetry.
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FIGURE 2a - Polarity.
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TABLE 1 - Nine types of ferroics in which domain walls can be moved by magnetic
fields, electric fields, or mechanical stress. Each is controlled by a different term in the
free energy function with an antisymmetry operator relating domain state orientations.

Type Domain Difference Antisymmetry Tensor

Primary Ferroics

Ferromagnetic Magnetization Axial First Rank
Ferroelectric Polarization Polar First Rank
Ferroelastic Strain Polar Second Rank

Secondary Ferroics

Ferrobielectric Permittivity Polar Second Rank

Ferrobimagnetic Permeability Polar Second Rank

Ferrobielastic Elasticity Polar Fourth Rank

Ferroelastoelectric Piezoelectricity Polar Third Rank

Ferromagnetoelectric ~ Magnetoelectricity Axial Second Rank

Ferromagnetoelastic Piezomagnetism "~ Axial Third Rank
application.

Knowing the optimum symmetry groups, how does one go about creating
these symmetries in a real material? Here one applies Curie’s Principle of
Symmetry Superposition and examines various composite ferroics (Newnham
and Giniewicz, 2000). Symmetry patterns can be generated at many different
size scales ranging from electron spin arrangements, crystal structures, defect
~ structures, textured grains, tailored domain patterns, electrode geometries,
connectivity patterns, and various morphologies using processing methods such
as extrusion, tape-casting, and photolithography. Many of the more unusual
point groups can be accessed when ferroic materials are prepared as fibers,
films, tubes, disks, multilayers and hollow spheres. Using Curie’s Principle of
Symmetry Superposition, many unusual cross-coupled properties can be
optimized by symmetry control. The new feature we are developing is a family
of antisymmetry operators (polar vector reversal, polar second rank tensor
reversal, axial second rank tensor reversal, etc.) which will augment our
understanding of the symmetry of solids, and enable us to predict new families
of functional materials for biomedical and industrial applications. Our goal is
to control the acoustic and electromagnetic resonance phenomena in a wide
range of electroceramic products.
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ANTISYMMETRIC’ CURIE GROUPS

~ In this section we describe a family of small electroceramic transducers,

- sensors, and actuators based on black-and-white Curie group symmetries (Fig.
7). One of the goals of this investigation is to control the acoustic vibration
modes and radiation patterns by controlling the symmetries of the transducer’s
material, its external shape and poling pattern, together with the driving
electrode geometry. Later we intend to extend these symmetry arguments to

electromagnetic wave modes as in millimeter wave resonators and dielectric
antennae.

We begin with an example to illustrate the basic idea. Consider a
spherical shell made of a piezoelectric ceramic such as PZT with randomly
oriented grains. When statistically averaged, randomly oriented grains in an
unpoled ceramic conform to spherical symmetry cocom1’ where aoco represents
an infinite number of infinite-fold rotation axes, m is an infinite number of

mirror planes, and 1" is the color reversal operator changing white to black,
and vice versa. ‘ -

In ferroelectric substances such as PZT we can use color to represent
polar vector reversal. When electrically poled in a strong DC field near T, the
altered domain structure changes the symmetry to «o/m'm, the symmetry of
an electric field. This is also the overall symmetry of an electric dipole with its
positive and negatively-charged ends. The co-fold axis is parallel to the dipole.

vocorn | r '.—t
{ | eocom’ 4 wooo I
JL__J

FIGURE 7 - The seven Curie groups (solid boxes) and fourteen black and white Curie
- groups (dashed boxes). The interconnecting lines denote group-subgroup relationships.
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m’ is a mirror plane accompanied by charge (color) reversal perpendicular to
the co-fold axis. In the symbol co/m’m, m refers to the infinite number of mirror
planes paralle! to the co-fold dipole axis. This is the symmetry of the material,
and that in turn determines the physical properties through Neumann’s Law
from crystal physics. That of course is why poled PZT is piezoelectric and
pyroelectric.

But that is not the only symmetry that is important in transducer design.
The vibration modes and radiation patterns depend on the symmetry of the
transducer’s shape, poling paltern, and driving electrodes as well. If we consider
a spherical shell as an example, the shape conforms to spherical symmetry
cocom1’, and if it is poled radially, the symmetry group changes to cocom. This is
a black- and- white symmetry group which exists in two physically-distinct
states corresponding to a hollow sphere poled inside-out or outside-in. The
principal piezoelectric and pyroelectric coefficients differ in sign for the two
states which are related to one another by the symmetry element m¢ reflection
accompanied by dipole reversal.

The symmetry of the radially-poled sphere (cocom) together with the
symmetry of the material (o/m’m) determines the vibration modes of the
transducer. The material symmetry determines the non-zero piezoelectric
coefficients: d,,, d,,=d,,, d,,=d.,. For a radially-poled sphere, the poling
direction X, and the driving field E, are in the radial direction r, while X, and
X, are orthogonal tangential directions designated by the symbol t. Therefore
d,, =d andd, =d,,= d . When driven electrically, the radially-poled sphere
vibrates in two fundamental modes: a high-frequency wall thickness mode
governed by d, and a low-frequency breathing mode controlled by d.. For a
hollow sphere 2 mm in diameter with a wall thickness of about 0.1 mm, these
resonances occur near 20 MHz and 600 kHz, respectively (Alkoy, 1999). As
discussed later, a much more complex mode spectrum with ellipsoidal modes
(symmetry group co/mm) is observed when the sphere is electroded at the N
and S poles and poled tangentially.

Three additional types of symmetry control can also be illustrated with
this example. The first involves re-electroding. The driving electrode pattern
need not be the same as the poling electrode pattern. Poling is generally carried
out at elevated temperatures under high voltage. After cooling and aging the
poling pattern is relatively stable. The poling electrodes can then be removed
and a new set of driving electrodes installed which create different vibration
modes. This is indicated schematically in Fig. 8. In this way a radially poled
sphere might be driven tangentially.

The second modification involves the use of a second transducer attached
to the first transducer and driven in a different mode. It is relatively easy to
build transducers in multilayer form with a common ground electrode and
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FIGURE 8 - Outline of experfmeﬁ:af approach.

independently-driven external electrodes. This enables us to superimpose two
vibration modes driven with different phases and amplitudes.

‘The practical aim of our program is to control the external radiition
pattern by controlling the symmetry. If one transducer is driven in an omni-
directional fundamental, and the second transducer in a dipole mode, the net
result is a cardioid mode. In this way one can direct the radiation in the desired
direction.

All of these patterns and their symmetries can be controlled indepen-
dently by choosing the material and its processing. Our current objective in
this research is to access the black-and-white symmetries in Fig.7 to generate
interesting acoustic vibration modes using piezoelectric and magnetostrictive
transducers.

FERROIC SPHERES, HEMISPHERES, AND RINGS

~ Our initial aim is to-study the vibration modes and radiation patterns
from the fourteen black-and-white Curie groups cocom, eocom’, 0000, co/m’m, oo/
mm’, co/m’m’, co/mm, eo/m, co/m’, 2, 002’, com’, com, and oo. All fourteen
symmetries can be accessed with ferroic hollow spheres or modified hollow
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spheres shaped as rings or hemispheres. When polished down on one side,
hollow spheres (symmetry group cccom1’) become hollow hemispheres
(symmetry group com1’). When polished symmetrically on two opposite sides,
hollow spheres become rings (symmetry group «o/mm1’).

Following the processing steps laid out in the experimental procedure
section, polycrystalline hollow spheres are prepared from strongly piezoelectric
and magnetostrictive substances such as PbZr, Ti O, (PZT) and Tb, , Dy,Fe,
(Terfenol-D). After poling, magnetizing, and polishing all 14 of the black-and-
white Curie groups can be generated according to the game plan shown in
Table 2.

TABLE 2 - Fourteen black-and-white symmetry groups to be obtained from processed
hollow spheres. Initially we are concentrating on the piezoelectric elements, and then
the magnetostrictive transducers. Combined elements are to be examined in the third
stage using multilayer processing.

Antisymmetric Curie Group Ferroic Morphology
cocom Radially-poled piezoelectric sphere
oocom’ Radially-magnetized magnetostrictive sphere
000 Concentric radially-poled piezoelectric sphere and
radially-magnetized magnetostrictive sphere
co/mm Radially-poled piezoelectric ring
co/mm’ Longitudinally-magnetized magnetostrictive ring
co/m’'m Longitudinally-poled piezoelectric ring
oo/m’my’ Radially-magnetized magnetostrictive ring
co/m Concentric radially-poled piezoelectric and
longitudinally-magnetized magnetostrictive rings
co/m’ Concentric longitudinally-poled piezoelectric and
radially-magnetized magnetostrictive rings
02 ~ Concentric radially-poled piezoelectric and
radially-magnetized magnetostrictive rings
02’ Concentric longitudinally-poled piezoelectric ring
and longitudinally-magnetized magnetostrictive
ring
©om Radially-poled piezoelectric hemisphere
com’ Radially-magnetized magnetostrictive hemisphere
oo Concentric radially-poled piezoelectric and
radially-magnetized magnetostrictive hemisphere




217

The next step is to determine the resonant vibration modes experi-
mentally using impedance spectroscopy and to verify the measurements
theoretically using the ATILA finite element code. Typical calculated spectra
for a radially-poled piezoelectric hollow sphere and a tangentially poled hollow
sphere are illustrated in Figures 9 and 10. For the radially-poled sphere, the
low-frequency mode near 600 kHz is a breathing mode driven by piezoelectric
coefficient d,,, and the high-frequency 20 MHz wall-thickness mode is
governed by d,;. Miniature hydrophones and minipumps make use of the
large hydrostatic piezoelectric coefficient d, of these transducers. Hollow sphere
sensors and actuators have a stress amplification factor proportional to the

- sphere radius divided by the wall thickness, which is typically more than an
order of magnitude in our transducers.

Similar amplification factors apply to the tangentially poled sphere in
Fig. 10. This nicely illustrates how to control the vibration modes and their
symmetry with the electrode pattern. In this case different size circular
electrodes were applied to the top and bottom of the sphere, conforming to
antisymmetry group co/m’'m. When driven electrically, a series of ellipsoidal
and egg-shaped vibrations were excited, as illustrated in Figure 10. The ATILA

code is very helpful in identifying and visualizing the various modes of vibration
of complex patterns and shapes. o
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FIGURE 9 - The (a) admittance spectrum of a hollow sphere electroded inside and
outside and poled radially. The principal vibration modes are the (b) low frequency
breathing mode and the (c) high frequency wall thickness mode. Both modes are
spherically symmetric conforming to the shape and electrode pattern. The dashed lines

correspond to the rest position and the solid line to the vibration motion. Scales are
arbitrary. (Alkoy, 1999)
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FIGURE 10 - Comparison of the (a) calculated and measured admittance response of
(b) a tangentially-poled hollow sphere with asymmetric electrodes. The displacement
fields of four vibration modes, two of which are ellipsoidal in shape (co/mm?), one is
spherical (cccom’), and one egg-shaped (com’). This illustrates Neumann's Principle which
says that the symmetry of a property must include the symmetry of the material and
the way in which it is driven (Alkoy, 1999).

TRANSDUCER FABRICATION

The fabrication process is designed to produce spherical electroceramic
devices with cofired inner electrodes. For commercial applications we need a
process capable of producing large quantities of hollow sphere transducers in
sizes ranging from a fraction of a millimeter to several millimeters. The process
is illustrated schematically in Fig. 11.
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FIGURE 11 - (a) A cross sectional view of the polystyrene spheres with platinum wires
attached. A pyrolyzable binder (PVA, etc) is used to keep the wire in position, (b)
illustrates the pre-wired polystyrene spheres coated with platinum contained slurry, (©)
shows the pre-wired polystyrene spheres coated with a ceramic layer on top of a
platinum layer, (d) shows the sintered ceramic hollow sphere with co-fired inner electrode
and protruded platinum wire, (e) is a cross sectional view of illustrating the finished
spherical transducer by electroding the outer surface of the hollow sphere whose inner
surface is already electroded by co-firing. ; ’

Thermally decomposable spheres made of polystyrene or hollow poly-
styrene spheres are used as a fugitive pattern. To achieve a ceramic layer with
high green density, a sphere or hollow sphere with a porous structure is
preferable. A thin metal wire, typically Pt or Ni, is first attached to the sphere
and secured in position using a thermally decomposable binder such as PVA.
The wire is used later to apply voltage to the inner electrode. An electrode
layer is then coated on the outer surface of the pelymer core by dipping it into
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a slurry containing metal powders. The electrode is then dried and further
serves as a mold for the ceramic slurry. A ceramic shell is then deposited on
top of the dried electrode by dipping into a well dispersed ceramic slurry
containing binder and dispersant. The ceramic slurry can be aqueous or non-
aqueous. The ceramic layer thickness is controlled by immersion time, the
solid loading of the ceramic slurry, and its viscosity. When a large wall thickness
is desired, multiple coatings can be performed. When the sphere is removed
from the slurry, excess slurry on the sphere can be removed by spinning the
sphere. Spinning also improves the uniformity of the wall thickness. The porous
polystyrene spheres and the electrode layer absorb water from the ceramic
layer. The capillary suction allows a dense green body of ceramic shell to be
formed, which is crucial in sintering a fully densified ceramic body.

After forming, the spheres are dried and taken through a polymer burnout
process in the temperature range between 300 and 700 °C. A ceramic shell
with an inner electrode is obtained after this process. Then the ceramic shell is
cofired with its electrode. The sintering conditions vary according to the ceramic
composition. In most cases, the ceramic and electrode materials are sintered
in the temperature range between 1200 and 1400 °C. The immersion time
and optimum sintering temperature must be adjusted experimentally to achieve
the maximum sintering density of ceramic. For lead containing compositions,
the ceramic shell needs to be fired in a closed container in a lead rich
atmosphere to reduce lead loss from the ceramic body.

After sintering, the outer surface of the shell is coated with electrode
metal through sputtering or dipping. A tiny lead wire is then attached to the
outer electrode. The ceramic shell is poled in the case of piezoelectric materials
by subjecting the ceramic shell to high electric field at elevated temperatures
in the range between 100 and 200 °C. This completes the process of fabricating
a hollow spherical transducer.

Multilayer hollow sphere transducers (Fig. 12) can be fabricated by a
multiple dipping process to give a structure with alternating electrode and
ferroic ceramic layers. After the first ceramic layer is deposited, it is dried and
then coated with another layer of electrode material, followed by a coating of
another layer of ceramic. Care must be taken to make certain the second
electrode layer does not touch the platinum wire and a hole must be left in
the second ceramic layer for electrical connection. The goal is to make
multilayer hollow spheres with many thin layers similar to multilayer capacitors
and multilayer actuators.

After polymer burnout and sintering, the electrodes are connected to
electrical lead wires. Different connections are available depending on
applications. For receive applications, the layers can be connected in series to
improve the receive response. For projector applications, the layers can be
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FIGURE 12 - A multilayer hollow spherical transducer
prepared using a multiple coating process.

connected in parallel to increase the pressure output to transmit directional
beams with the electrodes driven with different phases and amplitudes.

To access certain of the antisymmetric Curie group symmetries (Table 2)
it is necessary to convert the hollow spheres into hemispheres or rings. This
step is carried out by mounting the hollow sphere in a polymer matrix and
polishing the sphere down on one side (for the hemisphere) or two sides (for
the ring). The polymer matrix provides the mechanical strength required for
the lapping operation. '

Limited re-electroding can be accomplished after removing the outer
electrodes used in poling the transducer. This enables us to apply driving fields
in directions other than the poling field directions, and thereby generate

different symmetries and different vibration modes.

ACOUSTIC APPLICATIONS

Applications are not the main focus of this discussion but it is important
to have practical goals in mind to justify the research. The increasing use of
- ultrasonic techniques in biomedical and underwater applications and the soph-
istication of these techniques has increased the need to characterize the acoustic
fields using ultrasonic transducers. In the last forty years several different tech-
niques and probe designs have been employed for this purpose, including
rod-guided waves, thermoacoustic sensors, fiberoptic sensors utilizing acousto-
optic interaction, and miniature acoustic probes made from ceramic and
polymer-based piezoelectrics. Miniature ultrasonic probes have been used
both for mapping the field of a hydrophone as well as the nonacoustic field of
turbulent flow. There are, however, several important requirements for micro-
probe sensors in these applications. In detecting underwater signals or biological
pressure waves, omnidirectionality is highly advantageous. Accurate mapping
of an acoustic field requires that: (i) the physical dimensions of the probe




222

should be smaller than the acoustical wavelength of interest, (ji) the resonance
frequencies of the probe should be well above the frequency range of interest,
(i) adequate sensitivity with an acceptable signal-to-noise ratio and (iv) wide
bandwidth. '

Although volume expanders with spherical shape are thought to be the
best way to achieve omnidirectionality, there are problems associated with
fabricating hollow spheres with sizes in the millimeter range, as pointed out
by previous researchers. There are a number of examples of transducers
prepared from piezoelectric plates, but these transducers have a pronounced
directivity even when the probe dimensions are smaller than a wavelength.
Solutions proposed previously for the directivity problem include solid-core
spherical probes and hollow cyclindrical probes.

In addition to the underwater applications, spherically shaped transducers
are also desirable in medical ultrasound applications. Examples include a quasi-
omnidirectional polymer-based transducer developed for ultrasonic guidance
of intravascular catheters and a focused transducer for biomedical ultrasonic
imaging, prepared from a spherical ceramic shell. Every year millions of medical
procedures are performed in the United States using catheter systems a few
millimeters in diameter. Typically, they are inserted through the skin into blood
vessels or into various body cavities to deliver drugs or therapeutic devices.

At present catheters are guided with real-time X-ray imaging (fluoroscopy)
despite the advantages of ultrasound imaging over X-ray imaging in terms of
cost, safety and availability. Because the wavelengths used in medical ultrasonic
imaging (0.2-0.5 mm) are several times smaller than the catheter, it acts as a
reflector and the ultrasonic visibility of the catheter is highly direction dependent
with regard to external ultrasonic beams. One solution to this problem is to
mount an omnidirectional ultrasonic transducer on the catheter that can ser-
ve as an ultrasonic marker to help locate the catheter without the use of
hazardous X-rays. The applications of these ultrasonic imaging catheters inclu-
de guiding balloon angioplasties of the leg, guiding catheters inside the heart
to ablate incorrectly functioning cardiac tissue, and guiding catheters within
the uterus to inject fluid into the fallopian tubes to test for tubal blockage.
Ceramic hollow sphere transducers have the required omnidirectionality and
high sensitivity and can be electrically matched to the electronic systems.

It is our hope that the miniature hollow sphere transducers described in
this paper will help satisfy the size, directionality and acoustic impedance
matching requirements for biomedical and underwater applications. Later we
hope to manufacture the transducers in large numbers by a simple inexpensive
process, which makes it possible to mass-produce throw-away transducers.
The basic understanding of vibration modes in small spherical transducers
provided by this symmetry-guided approach will help immensely.
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The S-walls (also called W'-walls) refer to those domain walls whose orientations do not

- coincide with crystallographic planes but rather change with temperature. A simple contin-
uum model has been constructed to describe the S-wall structures that occur at a

m3m — mmm ferroelastic phase transition. The model describes local values of the elas-
tic strain components and the temperature dependence of the S-wall orientation. Distortions
of unit cells across an S-wall was obtained numerically.

'Keywara’s} S-walls; W-walls; Landau-Ginzburg model; crystal symmetry; ferroelastics;

domain walls

INTRODUCTION

The S-walls (also called W'-walls) occur in certain ferroic species 2!
and generally do not coincide with crystallographic planes. The orien-
tation of S-walls (SWs) in ferroelastics depends on the values of
spontaneous strain, hence, will change with temperature.

Because the "strange” physical nature and the high application po-
tential for these SW structures, there have been intense experimental
studies on them and many interesting results have been obtained. For
example, intersections between S-walls and W-walls in ferroelectric
KNbO; ™, temperature induced SW switching in ferroelastic phases of

[3491/137
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NaNbO; ) and AgNbO; 1] g.walls have also been observed in many
other orthorhombic materials, such as PbZrOs 1 PHHO; [8],
Pb(Zr1xSny )O3 ¥ and Pb(Ybo sNbo )03 1.
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FIGURE 1. Distortion near the S-wall for 4/m—2/m phase transition!' '\

One earlier work on the SW structure was done for a 4/m —2/m fer-
roelastic phase transition by using a two-dimensional continuum
model ', More recently, high resolution transmission electron mi-
croscopy has been used to characterize the SWs in monoclinic LaNbO4
(4/m—2/m ferroelastics) (2 )

In this paper, we present a simple continuum mode! for the S-walls
resulting from an m3m—> mmm phase transition, and also provide

numerical solutions for the S-wall structure and strain variations near
the SWs.

THEORETICAL MODEL

The m3m—> mmm ferroelastic phase transition has a shear strain com-
ponent as the order parameter; the other components of the elastic
strain tensor serve as secondary order parameters.
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- We consider twin structure characterized by the following two
spontaneaus strains Bl

,« (S, S, 0 S 0 0
SY=|S; S, 0] s®=|0 S, -S| (1a,b)
| 0 0 S, 0 -S, S,

In order to match the elastic strain at the interface, the orientation of
the domain wall plane will depend on the values of spontaneous strain
according to the following relation

(S, = S3)(x, —x;) +2S,x, =0 Q)

All strain cempezients used here are expressed in the same cubic coor-
dinate system of parent paraelastic phase.

Simplified free-energy density (invariant in m3m) can be written
as

F(ny:my,) =ay(n; +15 +15)+ (07 +15 +13) + |
o, {m (3 + 1 —207)+ 1, + 17 = 2n02) +m(mi + 02 =272)} (3)
P P P |
a7t +18)+ 2GR +( ’?’)2+(£5)’}.
| ; .

ox, ox,

The linear elastic strains, 7;, are defined by the derivative of the elas-
tic displacement u

1 ! _
ny = E(ui,j +u;,f), . ‘ 4)

and expressed using the Voigt notation ;= 55, 72= 725, 713= N33, 4=
2123, n5= 2113, ne= 2n;2. All the expansion coefficients in Equation (3)
are assumed to be temperature independent except «; = ap (T-Ty),
with @p>0. In order to reduce the number of independent coefficients
in the free energy expansion, we have normalized the free energy den-
sity by the coefficient of the second term.

SW problem is translationally invariant along the wall plane and
hence all quantities characterizing the SW should depend on the dis-
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tance from SW only. We choose a new coordinate system with one of
the axes (x')) perpendicular to the SW, and the remaining two axes (x",
x'3) parallel to the SW plane (Figure 2). Due to this choice the orienta-
tion of the coordinate system depends on the values of spontaneous

strains, i.e. on temperature.
e

2

XZ X3'
yxl '\2—-—} X'
X; /

S-wall
FIGURE 2. Relationship between the new and old coordinate systems.

The corresponding coordinate transformation can be chosen in a
special form given by

(1c L _p)
x'y V2 2 (xl
X, |= \/?D (1> C ix| | )
x' -—C — D \x
S U R R
S-S D= Ss (6a,b)
JS, =-8)7+282° (5, -8;)? +28;

The components 7; of the elastic strain in the free-energy must be
transformed to the new coordinate system (denoted by a prime,

7'y .15 51’5, etc.).
S-WALL SOLUTIONS

The continuum SW solution can be derived from the Euler-Lagrange
equations taking into account proper boundary conditions
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o | OF oF
- =0, (i,j=123) N
axk {a??y x } gny ’ ‘

In materials without defects the following compatibility relations must
also be satisfied '

EutEllnim =05 (bl mn=123) - (®)

where g is the Levi-Civita’s tensor (permutation symbol). Equations
(7) and (8) are given in invariant tensor form, independent of the
choice of the coordinate system. In the rotated coordinate system the
compatibility relations are reduced to

Tpn=0, Tun=0 Nyun=0 ‘ ®

because all strains depend on x’; only due to the translational symme-
try. : |
" In non-homogeneous system, five components of the spontaneous
strain in Equation (1) (transformed to the rotated coordinates) are
equal in both domains, but the shear strain component S’s (order pa-
rameter) has opposite signs in the two domains. The boundary condi-
tions for the elastic strains should match spontaneous strains of domain

1 as x';—>+cand domain 2 as x';—»-©

lim 7. &) =S, lim 76 (x}) = %87 ,(@=12,...5)  (10a,b)

X'yt x>t

The compatibility relations Equation (9) can be integrated and the
strain tensor components parallel to the SW (7',,7';,7',) must be

constant due to the required boundary conditions Equation (10a). For
convenience, we introduce the dimensionless strain components

e s T
W= YVs= g Ve T

‘ Sx Ss Ss
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-
Qo

o
()

o

Normalized Strain y’

a1=-0.32, a2=8, a3=1 00

20 15 10 05 0 05 10 15 20

Dimensionless Space Variable x’";

FIGURE 3. Normalized strain components across an S-wall at a specific tem-
perature below Tj.

Finally, the SW problem reduces to solving the following three coupled dif-
ferential equations (dimensionless coordinate x, is defined by x; = jx—l—)
)

d Co
dx'}:; = Ra (ypys ,yé), (a = 1,5,6) (1 1)
l -

The functions R;, Rs, Rs are third-order polynomial functions in terms
of the relative elastic strains y'), ys, and y's. The coefficient of each
term is a complicated function of the coefficients @, a, and a; and
will change with temperature. Typical solution of a twin with an SW is
given in Figure 3.
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Y, 0.8

;a 0.6 |

»n 047

=

; 0.2

z 0

g -0.2 &av}_ '
§ -0.4

’§. 0.6 a;=-0.32, a;=8, a;=100
| = 0.8 |

20 415 10 05 0 05 10 15 20
Dimensionless Space Variable x"’;

F IGURE 4. Displacement profile across an S-wall ata specific
temperature below 7.

The elastic displacements can be found by numerically integrating
‘the corresponding strain components in rotated coordinates, i.e. Equa-

tion (4). Typical solutions of the elastic displacements are shown in
Figure 4.

SUMMARY

A simple three-dimensional continuum model has been developed for
the ferroelastic S-wall structure produced by a m3m— mmm ferro-
elastic phase transition. The elastic strains as well as displacements
near an S-wall have been calculated using this model. In general, latti-
ce deformation near the S-wall not only contains longitudinal strain
but also includes nonzero shear strain components. Although the SW
solution is only numerical, our three-dimensional model provides a
unique theoretical tool to study SW structure in the systems produced

through a m3m—> mmm ferroelastic phase transition.
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~ Abstract ‘ :

Current piezoelectric composite materials contain ™wo or more phases out of which at least one reveals piezoelectric
properties in itself. We show that this is in fact not a necsssarv condition. The mechanism of the linear stress-polarization
response averaged over a composite sample can be also based on flexoelectric properties of one or more constituents. Proper
shaping of the composite constituents is required. such thar the system as a whole acquires a symmetry allowing for nonzero
piezoelectric coefficients even if none of the components is piezoelectric. Externally applied swress is ransformed. due o
-proper geometry of the constimuents with different elastic properties. into a strongly nonhomogeneous distribution of induced
strain. Flexoelectric properties which are, by symmetry. allowed in all materials. transform the strain gradiemt into
polarization. The proposed piezoelectric composite falls into the category of composites with product properties since it
involves different assets of the phases (elastic, flexoelectric and dielectric) and the interaction between the phases.
determining the inhomogeneous distribution of stress. is essential. € 1999 Elsevier Science B.V. All rights reserved.

PACS: T7.84—s:7790-%

Keywords: Piezoelectric marerials: Composites; Flexoelectric effzct

1. Introduction three criteria. The most important aspects are the

macroscopic properties of the constituents. e.g.. their
response to electric, magnetic and elastic fields. This
determines the final assets of the composite. The
second, conmnectivity, indicates the way in which
each phase connects 1o itself. It is essential for the
magnitude and symmery of the composite’s re-
sponse. The third is scale, which determines the
response of the composite when wavelengths of
propagating waves become comparable with the
characteristic dimensions of any of the constiments.

Many composites have been considered in con-

Composites are multiple-phase solids which com-
bine materials of different chemical composition and
macroscopic properties with the aim to produce sam-
ples with the desired average response. Figures of
merit of the final composite can be tuned by choos-
ing component phases with the right properties and
coupling them in an optimum manner. Newnham et
al. [1] offered a classification of composites based on

" Corresponding author. Tel.: + 3-814—865-1181; Fax: +1-814-

863-7846
" On leave from the Department of Physics. Universin of
Technology, CZ-46117 Liberec, Czech Republic.

nection with their piezoelectric properties [1.2]. To
discuss or model the piezoelectric response of 2
composite, it was generally assumed that at least one

00167-577X/99/5 - see front matter © 1999 Elsevier Science B.V. All rights reserved.
PIL: S0167-577X(99)00020-8
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of the components was piezoelectric. In this paper
we reconsider this assumption.
b

2. Discussion

For a system to be piezoelectric, it has to fulfill
certain symmetry criteria. If it has a crystalline struc-
ture. the material must, by symmetry, belong to one
of 20 crystal classes. The remaining 12 classes do
not show piezoelectric properties; these are the 11
cenrosymmetric classes and the class 432 in which
piezoelectricity is forbidden by the combined sym-
metry elements.

In Nye's widely used overview of the equilibrium
properties of the 32 crystal classes [3], the properties
of an isotropic medium are also included. The sym-
metrv of an isotropic medium is primarily character-
ized by the presence of arbitrarily oriented symmetry
axes of infinite order. Depending on whether its
symmetry elements do or do not include arbitrarily
oriented mirror planes. the isotropic medium repre-
sents one of the Curie symmetry groups (limiting
groups). namely, =, x/m or *x, respectively. In

Table 1
Matrices of d,;; in Curie groups which are piezoelectric

*x

0 0 0 dy ds o|
0 0 0 ds =—dy 0
d:; dy dyi 0 0 0

xﬂ

o 0 0 d, 0 0
0 00 0 ~d, 0
o o0 0 0 0

O 0 0 0 ds O
0 0 ds 0 0
d. dy dy O 0 O

In 2ll groups the = axis is taken as v;: the axes «x,, x, are
perpendicular to x, and to each other. otherwise their orientation
is arbitrarv.

com o 2

Fig. 1. Characteristic forms representing symmetry of the Curie
groups which allow for piezoelectricity {4].

both these groups no nonzero piezoelectric coeffi-
cients are possible.

In addition to these two groups. however, we may
consider systems representing the remaining Curie
groups. namely %, ©/m, %2, *m and = /mm. Out of
these. x/m and */mm do not allow for the exis-
tence of nonzero components of a third-rank polar
tensor d.., of symmetry V [V-] ie.. of the piezo-
electric tensor. In the remaining groups nonzero
components are possible, as shown in Table 1. It is
useful to illustrate symmetry properties of these point
groups by characteristic forms [4]: these are shown
in Fig. 1. We realize that svstems revealing the
svmmetries % or @2 can exist in two forms, left- and
right-handed.

Thus. for instance, a composite with connectivity
0-3. in which the phase ‘0’ is represented by cone-
shaped particles whose =-axes are parallel to each
other but which are randomly distributed in the
phase °3°. has the symmetry =m. Next we can
imagine that the cones are subject to helical deforma-
tions so that spiral-shaped particles result. This low-
ers the symmetry to %. The svstem can exist in two
forms. right- or left-handed. The third piezoelectric
Curie group can be visualized starting again with a
composite of connectivity 0-3 in which the phase
‘0" is represented by cylinders: its symmetry is
nonpiezoelectric */mm. If now all cylinders are
subject to a helical deformation. the symmetry is
reduced to *2, which again can exist in two forms
differing in handedness. Fig. 2 shows such compos-
ites schematically. These particular models are based
on the 0-3 connectivity but similar considerations
can be made for other connectivities as well.

It thus appears easily possible to manufacture
composites whose symmetry properties allow for the
existence of piezoelectric tensor although they con-
sist of components which by themselves need not be
made of piezoelectric materials.
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Fig. 2. Simple models of 0—3 composites allowing for piezoelec-
tricity. There is an infinite number of shapes of the O-constituent
that could be tested for a maximum response of flexoelectric
polarization.

A long time ago, Shubnikov et al. introduced the
concept of piezoelectric textures; see Ref. [5] and
the first chapter of Ref. [6]. This notion denotes
systems composed of crystallites which show piezo-
electric properties, some crystal axes of which are
chaotically oriented in a given way, leading to spe-
cific averaging of properties characterizing the
piezoelectric effect. In the subsequent parts of Ref.

[6], two specific kinds of materials are discussed as
examples. Plate-like samples containing crystallites
of Rochelle salt separmted by amorphous layers
(chapter 2 by Konstantinova and Sil’vestrova) could
indeed be considered a 0-3 composite. Polarized

ceramic samples of barium titanate (chapter 3 by

- Zheludev), on the other hand, whose symmetry is
*m, represent a piezoelectric texture by Shubnikov’s
definition but could only be included into the family
of composites if the grain boundaries had an appre-
ciable volume.

In both these cases basic components are piezo-
electric by themselves (point symmetries 2 for
Rochelle salt and 4mm for BaTiO,). On the other
hand, in the general symmetry approach this is not 2
specific requirement. As shown above, the possibil-
ity of a piezoelectric response in 2 0-3 composite is
assured, from the point of view of symmetry, already
by shaping the particles of zero connectivity. We
thus have to look for alternative mechanisms which
would lead to formation of an average polarization
proportional to an applied stress for a 0-3 composite

made of nonpiezoelectric materials, with properly

shaped particles.

~ For several decades, the effect of inducing polar-
ization by imposing spatially nonuniform strain was
repeatedly discussed in the literature. Originally dis-
covered experimentally in centrosymmetric (and
therefore nonpiezoelectric) liquid crystals, it was

termed the flexoelectric effect and described by the
equaton

P dg;
1= Mijer o
- ax,

ey

from which it is obvious that the tensor u has the

-general symmetry [V?] V2, ie., p;5, = py,, is the

only requirement imposed by symmetry. A tensor of
this symmetry has nonzero components in all crystal
classes. The first attempt to observe the flexoelectric
effect in a solid crystal of point symmetry 4/m,
namely CaWO, was made by Zheludev et al. [7]. As
shown by Tagantsev [8], the static effect includes a
bulk 4and a surface contribution. The bulk part is due
to the.fact that the crystal lattice which has been
pophomogeneously deformed in accordance with the
laws of the theory of elasticity is not in equilibrium
from the point of view of displacements in the unit
cell. The displacements that are necessary to reach
true equilibrium give rise to a dipole moment of the
cell, i.e., to polarization. In addition, the deformation
of the surface of a finite sample, whose electrical
neutrality in the original state was achieved by com-
pensating free charges, leads to a surface contribu-
tion which can be expected to be of the same order
of magnitude as the bulk part of the effect. The
simplest estimates [8] for a common insulator indi-
cate that both contributions to the value of u are of
the order of the ratio of the electron charge to the
iattice constant.

We now have in mmd a 0-3 composite made of
nonpiezoelectric constituents, in which the {-ele-
ments are shaped and oriented in such a way that the
overall symmetry is one of the Curie groups w, om
and =2. As an example, consider a plate-like sample
of composite of symmetry ©om in which the orienta-
tion of the O-constituents is such that the ® axis is
perpendicular to the major plane. Since the tensor
K;jx; has nonzero components even for continuous
groups %= and ®oom [4], one can imagine that both
the O-component and 3-components are made of
isotropic materials. Their shaping is such that when a
load 033,,, is applied, the spatial distribution of
stress will be nonhomogeneous, leading to gradients
of strain in both constituents. To be concrete, we can
imagine that a plate-like sample of thickness 4 is
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divided into a regular system of cubes of linear size
dy, each cube containing one particle of the compo-
‘nent with zero connectivity and only this component
is assumed to have nonzero flexoelectric properties.
The dipole moment of each O-particle within one
cube will be given by

dg;;(r)

ox;

(2

where the strain gradient will be determined by a
factor a;; which reflects the shape of the compo-
nents 0 of the composite and depends on elastic
compliances of both constituents:

d&;;(r)
0x,
The induced charge density on the electrode of the

plate will be
Q - P3fiex ( 4)

Pifiex = _/; dg)p'sijk

= ax‘jk(r) O33appl - (3

. 50 that the effective polarization of the sample P, =
Q will be given by

Py =d;q,,0: 33appl (%)
where

1
fisaﬂex = d—g /(. dg)aijk(r ) M3 j3dr. (6)

A piezoelectric composite based on flexoelectricity
will be useful if a reasonably high value of dj,,
could be reached, e.g., 100 pC/N. It follows from
the preceding formulae that the latter can be influ-
enced by a proper tuning of several independent

factors: selecting materials with high values of those )

components of j,;;, which are involved in a particu-
lar geometry of the constituents, choosing a high
density of the constituents 0, but also by achieving
large factors a;;, which depend on the shape of the
. O-components and on the elastic tensors of both 0
and 3 constituents.

Newnham [2] classified properties of composite
materials into three groups: sum properties (the com-
posite property coefficient depends on the corre-
sponding coefficients of its constituent phases), com-
bination properties (the composite property coeffi-
cient depends on two or more corresponding coeffi-

cients of its constituent phases) and product proper-
tes. In the latter case the composite property coeffi-
cient involves different properties of the constituent
phases with interactions between them. It appears
that piezoelectric composites based on flexoelectric-
ity fall into this last category and the effect might be
referred to as a “shape-controlled product property’;
indeed the combined effect involves different proper-
ties of the constituent phases (elastic, flexoelectric
and dielectric) and the interaction between the phases
is essential; here it is the nonhomogeneous distribu-
tion of stress which depends primarily on the shapes
of constituents and on their elastic tensors. The
following sequence of phenomena describes the
combined effect: homogeneous applied stress —
inhomogeneous stress in the O-constituents —
polarization in the O-constituents due to flexoelectric
effect — nonhomogeneous distribution of polariza-
tion in the sample depending also on spatial distribu-
ton of- permittivity = nonhomogeneous surface
bound charge — averaged surface bound charge den-

sity defining effective polarization. Considering a

stress o.. applied perpendicularly to a plate-like
composite sample, we have the sequence

o'::.appl - grada'z‘j.sample(r) i P(l’) - q( x’y)surf

- qsurf « P:.snrf « a'::.appl'

At this stage very few data on the tensor u; et 10
solids seem to be available. A fairly strong flexoelec-
tric response was reported for crystals of Cd,WO,
[7]. Marvan and Havrének [9] studied the flexoelec-
tric effect in elastomers of isotropic symmetry. Sam-
ples in the form of truncated pyramids were de-
formed by axial pressure along the axis 3. Then for
constant volume of the sample the only active coeffi-
cient is pt333; which was estimated to be of the order
107" to 107!° C/m. Experiments with 0-3 com-
posites in which the O-constituent or both compo-
nents of the composite would be a polymer might be
worthwhile.

We may also note that such composite samples
might be interesting to investigate in which one of
the constituents is piezoelectric; due to flexoelectric-
ity, its induced dipole moment could be considerably
enhanced by proper shaping to optimize the nonho-
mogeneous distribution of strain.
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- The relationship between elastic strain gradient and electric polarization was investigated in the
relaxor ferroelectric lead magnesium niobate ceramic. Experimental studies indicated that
flexoelectric polarization is linearly proportional to the applied strain gradient, and the flexoelectric
coefficient w|, is calculated to be 4X10™% C/m, which is much higher than the early
phenomenological estimations. © 2001 American Institute of Physics. [DOIL: 10.1063/1.1356444]

The piezoelectric effect is the linear relationship be-
tween electric polarization and applied elastic stress {direct
effect) or between elastic strain and applied electric field
(converse effect). Due to the symmetry requirements, the
piezoelectric effect may only exist in 20 crystal point groups
where center of symmetry is absent. More than three decades
ago, phenomenological analysis' stated that electric polariza-
tion might be induced by inhomogeneous strain in the mate-
rials. Later the term flexoelectric was coined to describe such
an effect in analogy to an effect discovered in the nonpiezo-

‘electric liquid crystals,? and tensor property’ and micro-
scopic theory* were investigated theoretically for single crys-
tals. The flexoelectric effect is defined by the following
relation:

56,-'

P £=é‘fjﬂ';xi', ‘ N
where P, is the /th component of flexoelectric polarization,
K1 is the flexoelectric coefficient, €;; is the elastic strain,
and x; is the position coordinate. Flexoelectricity is con-
trolled by a fourth-rank tensor, and thus is a property of all
insulating solids, but so far no flexoelectric coefficients have
Jin fact been measured. In the late 1960s, attempts were made
to investigate the electrical polarization in nonpiezoelectric
CaWO, crystals during torsional deformation, which might
be closely associated with the flexoelectric effect,” but the
polarization had been attributed to the disappearance of the
center of symmetry after torsion, rather than the effect of the
strain gradient. In the late 1980s, a tiny flexoelectric effect
was observed in an isotropic elastomer with a static flexo-
electric coefficient of the order of magnitude of
107"-107 C/m ®

- Recently, an idea was developed for designing 0-3 pi-
ezoelectric composites based on the flexoelectric effect
where none of the components are piezoelectric.” If the
flexoelectric coefficients are large enough for practical appli-
cations a range of properly engineered flexcelectric compos-
ite structures could provide completely new piezoelectric ca-
pability. Recent studies®® have indicated that the relaxor
“ferroelectric perovskites like Pb(Mg;;sNby5)0; (PMN) are
exceedingly sensitive to elastic stress in the region of tem-
perature between the dielectric permittivity maximum 7T,

VElectronic mail: lec3@psu.edu

0003-6951/2001/78(19)/2920/2/$18.00

2820

and the freezing temperature T, from the Vogel-Fulcher re-
lationship. In this letter, we report the investigation of flexo-
electric effect in relaxor PMN ceramics.

The flexoelectric measurements were carried out at room
temperature by using an experimental setup shown schemati-
cally in Fig. 1. The PMN ceramic bars (76.3 mm length, 12.7
mm width, and 2.5 mm thickness) were provided by the TRS
company of State College, Pennsylvania. A very thin layer of
sputtered gold was used as electrode, the bottom surface of
the sample is fully covered with gold while on the top a
series of 3 mm diameter electrodes were prepared. Strain
gradient was generated in the samples along the thickness
direction by a loudspeaker. A MicroStrain DVRT transducer
was used to measure the displacement at several positions
along the sample bar. The loudspeaker was driven by an
HP467A power amplifier with a 1 Hz sinusoidal signal from
an SR830 DS?P lock-in amplifier. The generated current was
monitored by the lock-in amplifier. The generated polariza-
tion may be calculated using the following equation:

i
,P3=2—frf-_43 (2)

where i is the alternating current, 4 is the electrode area, and
fis the driving frequency of the loudspeaker.

The macroscopic symmetry of PMN between T, and T,
is cubic m3m, while the unpoled ceramics are regarded as
isotropic. Thus, the flexoelectric tensor matrices may be
written as ‘

Lock-in
Amplifier

Displacement
Transducer

Power

Loudspeaker

FIG. 1. Experimental setup for the measurement of the flexoelectric effect.

© 2001 American Institute of Physics

Downiloaded 02 May 2001 {o 146,186.113.144, Redistribution subject fo AIP license or copyright, see hitp:/iojps.aip.org/apio/aplcr.isp




Appl. Phys. Lett., Vol. 78, No. 19, 7 May 2001
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FIG. 2. Schematic diagram of a cantilevered beam and the axial arrange-
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For the present situation in Fig. 1, only the transverse
effect exists, so the flexoelectric equation may be simplified
as

O O O o

0
0
0
0
0

de 11
Py=pp—. 3)
ox 3
The strain in the PMN ceramic bar was calculated by
assuming the natural vibration of a cantilevered beam shown
in Fig, 2. The mode shape'® can be written as

W,(x;)=4,[(sin B,L—sinh B, L)(sin B, x,
—sinh B, x{)+(cos B, L+cosh B, L)
X(cos B, x,~cosh B, x1)], @

where A,=C,/(sin 8, L—sinh 8, L), r=12,....

Here we only consider the fundamental mode (r=1),
therefore we have 8; L=1.875. C, can be determined from
the boundary condition, i.e., the measured vertical displace-
ment of the PMN bar.

The gradient of transverse strain along the thickness di-
rection can be written as'!

5611 _ &ZW(XI)
(913 5xf '

Figure 3 showed the experimental results of the strain
gradient induced polarization at two positions of the PMN
bar, one is near the clamped end (x,/L=0.18) where the
strain gradient is supposed to be higher, while the other is
near the free end (x,/L=0.67). It is seen that the fiexoelec-
tric polarization is proportional to the strain gradient. The
slopes of the polarization versus strain gradient curve ob-
tained at two positions are very close. At the same driving
voltage, the clamped end generated higher polarization than
the free end. Based on the experimental results, u,, was
calculated to be about 4X10~¢ C/m.

The temperature dependence of dielectric permittivity
and tangent loss at various frequencies ranging from 1 kHz

)
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FIG. 3. The relationship between flexoelectric polarization and strain gradi-
ent in the relaxor Pb(Mg,3Nb,;)0; ceramics.

to 1 MHz have been investigated and the dielectric peak
temperatures are well below room temperature. At room
temperature, the materials should be cubic and the unpoled
ceramics are isotropic and should not exhibit any piezoelec-
tric effect in principle. Furthermore, for the current measure-
ment configuration, the upper and lower parts of the sample
endure strain of opposite sign. So even if there is any rem-
nant piezoelectric effect, the net effect in the whole sample
should be zero because the piezoelectric polarization gener-
ated in the upper and lower halves would cancel.

Former theoretical analysis estimated the flexoelectric
coefficient to be of the order of magnitude of e/a,** where
e is the absolute value of electron charge and a is the lattice
parameter. Generally, e/a is around 10~!° C/m for almost all
materials, which is very small. The current experimental re-
sults on the relaxor PMN ceramics are much higher than the
phenomenological estimations and are very encouraging.
Such high flexoelectric effect observed in the relaxor PMN
ceramics may be associated with the high dielectric constant
(around 13 000 at 1 kHz and room temperature), so the
charge separation becomes much easier than those in the low
permittivity materials.

In summary, a flexoelectric effect has been investigated
in the relaxor ferroelectric PMN ceramic, the measured
flexoelectric coefficient is about four orders of magnitude
higher than the earlier theoretical estimation.
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,,Observatioﬁ of the flexoelectric effect in relaxor Pb(Mg,;3Nb,;)O; ceramics
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The relationship between elastic strain gradient and electric polarization was investigated in the
relaxor ferroelectric lead magnesium niobate ceramic. Experimental studies indicated that
flexoelectric polarization is linearly prepemenal to the applied strain gradient, and the flexoelectric

coefficient u,, is calculated to be 4x1076

C/m, which is much higher than the early

phenomenological estimations. © 200! American Institute of Physics. [DOI: 10.1063/1.1356444)

The piezoelectric effect is the linear relationship be-
_ tween electric polarization and applied elastic stress (direct
effect) or between elastic strain and applied electric field
(converse effect). Due to the symmetry requirements, the
piezoelectric effect may only exist in 20 crystal point groups
where center of symmetry is absent. More than three decades
ago, phenomenological analysis' stated that electric polariza-
tion might be induced by inhomogeneous strain in the mate-
rials. Later the term flexoelectric was coined to describe such
an effect in analogy to an effect discovered in the nonpiezo-
electric hqmd crystals,> and tensor property’ and micro-
scopic theory* were investigated theoretically for single crys-
tals. The flexoelectric effect is defined by the following
relation:

de;

P s=ﬁf;ﬁ;i, , ¢y
. where P, is the /th component of flexoelectric polarization,
Riju is the flexoelectric coefficient, ¢;; is the elastic strain,
and x, is the position coordinate. Flexoelectricity is con-
trolled by a fourth-rank tensor, and thus is a property of all
insulating solids, but so far no fiexoelectric coefficients have
in fact been measured. In the late 1960s, attempts were made
to investigate the electrical polarization in nonpiezoelectric
CaWO, crystals during torsional deformation, which might
be closely associated with the flexoelectric effect,” but the
polarization had been attributed to the disappearance of the
center of symmetry after torsion, rather than the effect of the
strain gradient. In the late 1980s, a tiny flexoelectric effect
was observed in an isotropic elastomer with a static flexo-
electric coefficient of the order of magnitude of

10711070 ¢/mS
Recently, an idea was developed for designing 0-3 pi-
ezoelectric composites based on the flexcelectric effect
“where none of the components are piezoelectric.” If the
flexoelectric coefficients are large enough for practical appli-
cations a range of properly engineered flexoelectric compos-
ite structures could provide completely new piezoelectric ca-
pability. Recent studies®® have indicated that the relaxor
ferroelectric perovskites like Pb(Mg;3Nb,3)0; (PMN) are
_exceedingly sensitive to elastic stress in the region of tem-
perature between the dielectric permittivity maximum 77,
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and the freezing temperature 7 from the Vogel-Fulcher re-
lationship. In this letter, we report the investigation of fiexo-
electric effect in relaxor PMN cerarnics.

The fiexoelectric measurements were carried out at room
temperature by using an experimental setup shown schemati-
cally in Fig. 1. The PMN ceramic bars (76.3 mm length, 12.7
mm Width, and 2.5 mm thickness) were provided by the TRS
company of State College, Pennsylvania. A Very thin layer of
sputtered gold was used as electrode, the bottom surface of
the sample is fully covered with gold while on the top 2
series of 3 mm diameter electrodes were prepared. Strain
gradient was generated in the samples along the thickness
direction by a loudspeaker. A MicroStrain DVRT transducer
was used to measure the displacement at several positions
along the sample bar. The loudspeaker was driven by an
HP467A power amplifier with a 1 Hz sinusoidal signal from
an SR830 DSP lock-in amplifier. The generated current was
monitored by the lock-in amplifier. The generated polariza-
tion may be calculated using the following equation:

i
P3=2—a, _ ¥))

where { is the altemnating current, 4 is the electrode area, and
fis the driving frequency of the loudspeaker.

The macroscopic symmetry of PMN between T, and Vi
is cubic m3m, while the unpoled ceramics are regarded as
isotropic. Thus, the flexoelectric tensor matrices may be
written as

Lock-in
Amplifier

Displacement
Transducer

Power

Loudspeaker

FIG. L. Expcriﬁxentai setup for the measurement of the flexoelectric effect.
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FIG. 2. Schematic diagram of a cantilevered beam and the axial arrange-
ment.
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For the present situation in Fig. 1, only the transverse
effect exists, so the flexoelectric equation may be simplified
as

O O O O
O O O O O

de 11
P3y=pip—. ®
ox 3
The strain in the PMN ceramic bar was calculated by
assuming the natural vibration of a cantilevered beam shown
in Fig. 2. The mode shape'® can be written as

W.(x)=4,[(sin B,L~sinh B, L)(sin B, x,
-jsinh B, x1)+(cos B, L+cosh 8, L)

X(cos B, x;—cosh B, x1)], @)

where 4,=C,/(sin 8, L—sinh 8, L), r=12,....

Here we only consider the fundamental mode (r=1),
therefore we have 8, L=1.875. C, can be determined from
the boundary condition, i.e., the measured vertical displace-
ment of the PMN bar.

The gradient of transverse strain along the thickness di-
rection can be written as'!

dey  PW(xy)

2
ox 3 ox 1

®)

Figure 3 showed the experimental results of the strain
gradient induced polarization at two positions of the PMN
bar, one is near the clamped end (x,/L=0.18) where the
strain gradient is supposed to be higher, while the other is
near the free end (x; /L=0.67). It is seen that the flexoelec-
tric polarization is proportional to the strain gradient. The
slopes of the polarization versus strain gradient curve ob-
tained at two positions are very close. At the same driving
voltage, the clamped end generated higher polarization than
the free end. Based on the experimental results, u,, was

calculated to be about 4X 107 C/m.

The temperature dependence of dielectric permittivity

and tangent loss at various frequencies ranging from ! kHz
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FIG. 3. The relationship between flexoelectric polarization and strain gradi-
ent in the relaxor Pb(Mg,sNb,;3)0; ceramics.

to 1 MHz have been investigated and the dielectric peak
temperatures are well below room temperature. At room
temperature, the materials should be cubic and the unpoled
ceramics are isotropic and should not exhibit any piezoelec-
tric effect in principle. Furthermore, for the current measure-
ment configuration, the upper and lower parts of the sample
endure strain of opposite sign. So even if there is any rem-
nant piezoelectric effect, the net effect in the whole sample
should be zero because the piezoelectric polarization gener-
ated in the upper and lower halves would cancel.

Former theoretical analysis estimated the flexoelectric
coefficient to be of the order of magnitude of e/a, '** where
e is the absolute value of electron charge and a is the lattice
parameter. Generally, e/a is around 10~1% C/m for almost all
materials, which is very small. The current experimental re-
sults on the relaxor PMN ceramics are much higher than the
phenomenological estimations and are very encouraging.
Such high flexoelectric effect observed in the relaxor PMN
ceramics may be associated with the high dielectric constant
(around 13000 at 1 kHz and room temperature), so the
charge separation becomes much easier than those in the low
permittivity materials.

In summary, a flexoelectric effect has been investigated
in the relaxor ferroelectric PMN ceramic, the measured
flexoelectric coefficient is about four orders of magnitude
higher than the earlier theoretical estimation.
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Large flexoelectric polarization in ceramic lead magnesium niobate

Wenhui Ma and L. Eric Cross?

- Materials Research Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802

(Received 6 kAugust 2001; accepted for publication 4 October 2001)

Flexoelectric coefficient 4, is greatly enhanced in the relaxor ferroelectric lead magnesium niobate
ceramic. Phenomenological analysis suggests the high dielectric permittivity is inadequate to
explain the great enhancement. Temperature dependent measurement reveals a close relation

between the flexoelectric polarization and the preexisting

polar microregions in this relaxor

ferroelectrics. It is proposed that the strain gradient mzsht change the Gibbs free energy of the
relaxor system and easily reorient the already existing polar microregions, leading to the greatly
enhanced ﬁexaeiecmc effect. © 2903 American Institute of Physics. [DOIL: 10.1063/1.1426690]

Flexoelectricity describes the generation of electric po-
larization in an insulating solid by an elastic strain gradient.
Phenomenological treatment of the flexoelectric effect was
first made by Kogan,! who proposed that piezoelectric polar-
ization in an inhomogeneously deformed medium should be
a function not only of deformation but also of the spatial
derivatives of the deformation at the same point. For a cen-
trosymmetric crystal subjected to inhomogeneous deforma-
tion, only the strain gradient contributes to the polarization,
so the flexoelectric effect can be investigated independently.
. The flexoelectric coefficient u;j, is a fourth-rank polar ten-
sor, so that for a cubic crystal the nonzero components are

K Mz, and gyppp, Or in matrix notation gy, fyn,

and p4. For homogeneous solids, all earlier investigators
agree that the effect is very small in simple low permittivity
dielectrics, and the u;;; flexoelectric coefficients are of the
order of 101910~ C/m. > In previous article, we an-
nounced our measurement of the flexoelectric effect in lead
magnesium niobate (PMN) ceramic, where the u, coeffi-
cient is greatly enhanced, about 4X10”%C/m at room
temperature.’ In this letter, we report the temperature depen-
dent measurement of the flexoelectric polarization in PMN.

Temperature dependent flexoelectric measurement was
performed by using an experimental setup schematically
shown in Fig. 1. The measurement configuration, sample di-
mension, a:zd electrode geometry are the same as those used
previously.> As shown in Fig. 1, one end of the sample was
fixed to form a cantilevered beam. Temperature is uniform
all over the sample bar. A loudspeaker was used to drive the

~ beam at a frequency of 1 Hz, so a natural vibration was

generated at the fundamental mode. By measuring the mode
shape, we can calculate the strain all over the sample bar.
Because the top and bottom surfaces are subjected to strain
of opposite sign, there is a strain gradient along the thickness
direction. Qur former measurements’ show that the flexo-
electric polarization is proportional to the applied strain gra-
dient and the w1, coefficients obtained from measurements at
different positions along the beam are close.

Figure 2 shows the experimental result of flexoelectric
polarization as a function of temperature obtained in the
PMN ceramic. There is a2 maximum around the dielectric

PElectronic mail: lec3@psu.edu
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maximum temperature, 7, . Above 7,,, the flexoelectric po-
larization decreases rapidly with increasing temperature. As
shown in Fig. 2, an exponential decay function fits the ex-
perimental data well. By extrapolation, it is found that the
flexoelectric polarization becomes close to zero around T,
the so-called Bumns temperature.® At this temperature, the
polar microregions disappear and the relaxor reverts to clas-
sical Curie—Weiss behavior. Our result indicates that there is
a close relation between the flexoelectric polarization and the
already existing polar microregions in PMN, suggesting that
the preexisting polar microregions might play a dominant
role in the polarization mechanism.

In order to understand the origin of the greatly enhanced
H12 coefficients in relaxor PMN, let us make a simple analy-
sis of the contributors to the flexoelectric effect. In the mid
1980’s, Tagantsev developed the theory for flexoelectric ef-
fect in single crystals.>® In a crystal whose bulk symmetry
does not allow the piezoelectric interaction the appearance of
a polarization proportional to a strain gradient can be com-
prised of four components: a bulk static fiexoelectric effect; a
bulk dynamic flexoelectric effect; a surface flexoelectric ef-
fect, and a surface piezoelectric effect. As shown in the dis-
cussion by Tagantsev, for a simple homogeneous ionic solid
of cubic centric symmetry based on the rigid ion model, all
four components of the flexoelectric response are of the or-

Microstrain
i‘ DVRT
Temperature
Controller

Lock-in )
Amplifier ]

5 | 1 Power

— Amplifier

FIG. 1. Experimental setup for the temperature dependent flexoelectric mea-
surement: (1) PMN bar, (2} loudspeaker, (3) driving arm, (4) thermocouple,
(5) microstrain transducer core, (6) high purity nitrogen, (7) gas flow meter,
{8) copper coils immersed in Hquid nitrogen, (9) heating elements.

© 2001 American institute of Physics
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FIG. 2. Flexoelectric polarization as a function of temperature in the PMN
ceramic.

der of 1071°C/m, although the magnitude of surface piezo-
electric effect depends markedly on the nature of the surface.
For a soft-mode ferroelectric dielectric above T, in the cubic
phase the flexoelectric behavior is much simplified, both
static and dynamic bulk coefficients become larger in propor-
tion to the enhanced dielectric susceptibility, and the surface
flexoelectric coefficient becomes unimportant as it does not
scale with the susceptibility. The surface piezoelectric effect
might also be enlarged in proportion to the dielectric suscep-
tibility, but again depends on details of the surface character-
istics. For the current measurement configuration, the piezo-
electric polarization from the upper and lower halves
neutralize, so there should be no net effect even in the low
temperature ferroelectric phase. We have also performed the
flexoelectric measurements with the sample bar turned over,
i.e., with the upper and lower surfaces interchanged, the re-
sults obtained for the two opposite orientations are found to
be in-phase, evidencing the absence of a piezoelectric effect
due to unbalanced inhomogeneous surface layers.

Figure 3 displays the dielectric response of the PMN
ceramic sample. As shown in the dielectric spectrum, the
dielectric maximum temperature increases with frequency,
which is typical for a relaxor ferroelectric dielectric. Permit-
tivity of PMN at room temperature is of the order of 15 000,
while the dielectric permittivity for a simple ionic solid on
the point charge model is about 5, so an enhancement of
3% 10° can be expected from the high dielectric permittivity.
However, the flexoelectric coefficient x;, of PMN is of the
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FIG. 3. Dielectric permittivity and loss tangent vs temperature fo; the PMN
ceramic.
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FIG. 4. Flexoelectric coefficient u;, vs dielectric susceptibility y in the
PMN ceramic, where the solid circles are the experimental data, the dashed
curve is the polynomial fit, and the solid line is the estimated u,, values by
phenomenological analysis.

order of 5X 107 C/m, some 5X 10* times larger than that of
the simple ionic solid. It is clear that the high dielectric per-
mittivity is inadequate to explain the observed larger i,
value. Figure 4 shows the curve of measured u,, coefficient
versus dielectric susceptibility x, and the solid line is from
the phenomenological analysis [,u.ijk,~ x(e/a), where e is
the elementary charge and a is the dimension of lattice cell].
It is found that there is discrepancy between the experimen-
tally observed p,, values and the linear estimations, which
increases with the increase of dielectric susceptibility or de-
crease of temperature below 7. It may be noted that similar
deviations from linear extrapolation of high temperature

i AG -
iy i
i (b)
m v
[001) Strain gradient (001]
A
1 =1~ 2 \ 1, @leé2 .
‘S I @ i LS e o)

A T R

() TF=0 @ sF=o

FIG. 5. Schematic illustrations of (a) eight equivalent (111} polan'zat?on
orientations in a cubic lattice cell, (b) Gibbs free energy AG vs polarization
for four of the eight equivalent {111} orientations in a thombohedral ferro-
electric phase, and cross sections of the PMN bar showing the arrangement
of orientation of the nanopolar regions in a [001]-oriented grain (defined by
the dotted ellipse) (c) before and (d) after being subject to an elastic strain

gradient.
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;zrepertiés have been found during the temperature-
dependent measurements of optic index of refraction® and
thermal expansion’ in PMN, which were unanimously attrib-

- uted to the appearance of localized polarization.

Relaxor ferroelectrics are inhomogeneous media con-
taining micropolar regions even at temperatures well above
T, and the existence of nanoscale B-site order has been
directly confirmed by the TEM investigations.® The dielectric
behavior in relaxor ferroelectrics can be understood by the

~ combination of the compositional heterogeneity model® and

superparaelectric model.” Above T;, PMN is cubic both glo-
bally and locally without any polar regions. Figure 5(a)
shows a lattice cell of cubic paraelectric phase of perovskite
structure displaying eight equivalent {111} orientations. With
temperature going down below T, localized polarization
appears. According to the superparaelectric model, it is ex-
pected that the nanopolar regions are dynamically disordered
in the thermal field and the chance of appearance of a polar

vector along any of the eight (111) directions is equivalent.
- Figure 5(b) shows the Gibbs free energy for four of the eight

(111) polarizations for a low temperature ferroelectric phase,
it is clear that all energy minima are of the same depth in the
infinite perfect crystal. However, in the relaxor ferroelectrics,
due to composition fluctuation it is expected that the local

~ symmetry will be Jower than the global symmetry so that the

eight (111) polarization orientations are now inequivalent in
the local polar microregions. Under zero strain condition, a

. possible arrangement for the orientations of the nanosized

domains in a [001]-oriented grain in the PMN bar is sche-

‘matically shown in Fig. 5(c), the sum of all those polar vec-

W. Ma and L. E. Cross

tors is zero. In Fig. 5(d), the sample bar is subject to an
elastic strain gradient whose direction is defined as pointing
from contraction to expansion and is parallel to the normal
direction of sample surface. When the PMN bar is bent,
some polarization orientations become free energy unfavor-
able and it is suggested that the inhomogeneously deformed
nanosized polar regions reorient themselves towards the di-
rection of strain- gradient by polarization rotation between
adjoining (111) directions, e.g., from [1T1] to [1T1], so as
to reach the Gibbs free energy minima and there will be net
polarization in the strain gradient direction. ‘

In summary, fiexoelectric coefficient p,, has been mea-
sured as a function of temperature and the results suggest
that the observed large flexoelectric polarization might be
caused by reorientation of the preexisting polar clusters in
the relaxor ferroelectrics by the elastic strain gradient.

~ This work was supported by the Office of Naval Re-
search, Contract No. N00014-99-1-1011. We thank M. Mar-
van from Charles University, Czech Republic for his sugges-

tion of the importance of preexisting polar microregions in
the PMN ceramics.
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Flexoelectric polarization of barium strontium titanate

in the paraelectric state
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The strain-gradient-induced polarization (flexoelectric effect) was investigated in Bag ¢;Sr;33TiO; -
(BST) ceramic at temperatures above the 21 °C Curie point. At 23 °C the flexoelectric coefficient
#12 Was more than one order of magnitude greater than the highest value measured in lead
magnesium niobate ceramic. Over the temperature range of linear Curie-Weiss behavior, the
coefficient u,, was roughly proportional to the dielectric permittivity; however, the constant of

- proportionality was higher than predicted for simple ionic solids. The unexpected behavior in the
'BST ceramic suggests the need for a broader database of flexoelectric coefficients. © 2002
American Institute of Physics. [DOI: 10.1063/1.1518559]

Recently we investigated the flexoelectric polarization in
lead magnesium niobate (PMN) ceramic, a material which
is often regarded as the prototype for a broad family of re-
laxor ferroelectrics.® The high values measured, and particu-

larly the observed temperature dependence of the flexoelec-
tric coefficient u;, suggested that the polarization was
associated with a reorientation of micropolar regions which
. are known to occur in the temperature region above the weak
field dielectric maximum, but below a so-called Burns tem-
perature Tp, which is just the temperature range where the
high s, values are observed. Alternatively the high response
.may be a consequence of the very high dielectric permittivity
in the relaxor where the relative permittivity &, reaches up to
13 000 (measured at 1 kHz) at room temperature. Tagantsev*
suggested that the x;; may in fact be proportional to the
dielectric susceptibility x; ; Tollowing a relation of the form

; e
Bi=YXij . 1)

where y is a constant of value close to unity, e is the electron
charge, and g the lattice parameters. :

To test the possible role of micropolar regions it was
desirable to measure the response of a “normal” paraelectric
cubic perovskite with comparable or higher dielectric permit-
tivity but no lower frequency dielectric dispersion in the tem-
perature region above T.. Barium strontium titanate solid
solutions have perovskite structure, very high non-dispersive
dielectric permittivity, and Curie temperature T, which can

be positioned just below room temperature by appropriate

choice of composition. It must be cautioned however that
this is an exceedingly difficult system to synthesize as a ho-
mogeneous solid solution. We were fortunate to be able to
use a composition fabricated by Texas Instruments (TI), us-
ing a complex wet chemical route to the very demanding
specification for their long wavelength infrared dielectric bo-
lometric imager. In that system local homogeneity is essen-
tial to maintain the weak first order transition at T, which

*Electronic mail: lec3@psu.edu

0003-6951/2002/81(18)/3440/3/$18.00
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keeps ¢, at high value under dc bias fields, and global uni-
formity is necessary to avoid fixed pattern noise in the de-
tector pixel array.

The BST ceramic sample used in this study was cut from
a boule supplied by TI and was in the form of a bar 68 mm
long, 12.7 mm wide, and 1.8 mm thick. As for the earlier
measurements on PMN ceramics” 3 mm diameter thin sput-
tered gold electrodes were spaced along the bar. Dielectric
Imeasurements were carried out in a delta design temperature
chamber to check local and global uniformity. Typical data
for permittivity and loss as a function of temperature and
frequency are given in Fig. 1 and the corresponding recipro-
cal permittivity (dielectric stiffness) in Fig. 2. The high qual-
ity of the sample which has a Curie point at 21 °C is attested
by the very high sharp permittivity peak at T, the low di-
electric loss and the complete absence of dielectric disper-
sion over the frequency range from 100 Hz to 100 kHz in the
paraelectric range. Polarization measurements confirm that
the Curie transition is weakly first order. It is important to
note the small upturn in dielectric loss below 35 °C (Fig. 1)
which correlates closely with the departure from Curie—
Weiss behavior. We suspect that even in these TI prepared
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FIG. 1. Dielectric permittivity and loss in Bagg;St3sTiO5 ceramic as a

function of temperature, measured at frequencies of 100 Hz, 1 kHz, 10 kHz,
and 100 kHz at 2 field level of 5 V/om.
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FIG. 2. Curie~Weiss plot of reciprocal dielectric permittivity (stiffness) as a
function of temperature in Bag ;81933 TiO;.

samples there is a weak persistance of macroferroelectric re-
gions above T, reducing permittivity from the expected
Curie—Weiss behavior and enhancing dielectric loss.

The system used for flexoelectric measurements is iden-
tical to that used in earlier studies of PMN and is reproduced
here in schematic form in Fig. 3. The ceramic bar sample is
rigidly clamped at one end and driven into transverse. vibra-
tion at the “free” end by a small moving coil loudspeaker.

Current generated from the small gold electrode is measured .

by a lock-in amplifier, phase locked to the loudspeaker driv-
ing frequency of 1 Hz. A Microstrain DVRT (differential
variable reluctance transducer) is used to measure the ac
strain as a function of position along the bar. For the outer
1/3 of the bar length the measured vertical displacement
curve correlates closely with the curve calculated for the first
fundamental mode of a freely vibrating cantilevered bar.!
Close to the clamped end, the measured amplitude is slightly
larger, probably indicating that our best clamping is not suf-
ficiently rigid for the stiff BST ceramic. The free bar model,
with the measured amplitudes was used to calculate the
strain gradient at the positions of the electrodes.

Microstrain
DVRT Temperature
] —1 Controller
Lock-in Power
Amplifier Amplifier
1
5 ™4y /‘ ,
\ N

FIG. 3. Experimental setup for the temperature dependent flexoelectric mea-
surement: (1) BST bar, (2) loudspeaker, (3) driving arm, (4) thermocouple,
(5) microstrain transducer core, (6) high purity nitrogen, (7) gas flow meter,
(8) copper coils immersed in liquid nitrogen, (9) heating elements.
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FIG. 4. Flexoelectric polarization as a function of applied strain gradient
measured at a flexure frequency of 1 Hz.

Experimental results for the flexoelectric polarization as
a function of the transverse strain gradient are presented in
Fig. 4. The measurements were made near the clamped end
of the bar (x/L=0.25) at a temperature of 23 °C where this
BST solid solution is in the paraelectric phase. As expected
the polarization is linearly proportional to the elastic strain
gradient, but the slope of the line gives a magnitude of ., of
100 x#C/m. This magnitude of 4}, was a major surprise as
the value is not less, but in fact some 20 times larger than the
highest value (u;,~4 ©C/m) measured in the PMN ce-
ramic.

For the BST ceramic measurements of x;, as a function
of temperature above T, are shown in Fig. 5. The break in
the curve near 35 °C correlates well with the departure from
Curie—Weiss behavior. The plot of u, versus relative dielec-
tric permittivity (closely equivalent to susceptibility y in
these high K ceramics) is shown in Fig. 6 compared with the
expectation from Eq. (1) with y=1. There is a quasilinear
range between £,=2500 and £,=11000 but the measured
slope gives y=9.3. The change above &,~ 11000 is not un-
expected as the departure from Curie—Weiss law and the
enhanced loss signal the onset of an additional polarization
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FIG. 5. Flexoelectric coefficient derived from plots such as those in Fig. 4
as a function of temperature above the Curie point T .
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FIG. 6. Flexoelectric coefficient sy, vs dielectric permittivity. Solid dots:
measured values on BST; dotted straight line: expectation from Eg. (1) with

¥=1; and solid line is plotted to hightight the quasilinear range between
£,=2500 and &,=11 000.

mechanism, perhaps due to the survival of some ferroelectric
domains above the general T, . The dropoff of response be-
low £,=2500 is unexpected and not associated with the in-
adequate sensitivity since PMN response levels below 4

- #C/m were measured on the same system.

It may be argued that working close to T, in the
paraelectric phase stresses engendered by the transverse
drive may be sufficient to raise T, and induce ferroelectricity.
In these studies however the drive levels are very low so that
the maximum strain at the surface is of order of 1.1
X 1075, Assuming values of elastic compliance and electros-
triction constants similar to BaTiO;,” the associated stress
would move the Curie point ~0.03 °C. With equal but oppo-
site stresses at the two surfaces this would produce an unde-
tectable broadening of the response. That SrTiQ; based ce-
ramics may potentially have polar grain boundaries is likely
as demonstrated by Petzelt® for pure SrTi0; ceramic. In the
volume of the ceramic one may expect the ®com Curie group
symmetry of the randomly axed structure to average the pi-
ezoeffect to zero. For the surface however, the symmetry is
lower and residual piezoelectricity is possible. In the flexure
experiment, the two major surfaces are subjected to equal
and opposite tractions, so the effect should largely balance
out. However the two surfaces may not be exactly equiva-
lent, leaving a small response. To test for this possibility we

- measured the phase of the flexoelectric signal with the

sample inverted. Thus if the signal was piezoelectric, the
phase should change by 180°. No change of phase was mea-
sured, thus precluding the surface effect.

~ Although the stable narrow polar grain boundary phase

 will not by symmetry affect the elasto—dielectric responses,

as Petzelt® suggests, close to T, the surface polarity may

induce macropolar domains in some grains. Such domains

W. Ma and L. E. Cross

would now contribute a new dielectric contribution to re-
sponse, strongly coupled to the elastic behavior and could be
the origin of the departure from Curie—Weiss law and the
enhanced flexoelectric response observed in BST samples
closeto T.. '

There is extensive literature on ﬁexc:xe:ie:c:tricity;"H
mostly focused upon low permittivity simple ionic solids and
soft elastomer systems. Tagantsev* appears to have been one
of the first to highlight the importance of the dielectric sus-
ceptibility in enhancing both surface and volume contribu-
tions, and raising the magnitude above the accepted level of
e/a which gives a low g;; value of 107'°~107"! C/m. The
enhancement due to dielectric susceptibility is of cardinal
importance for the high permittivity incipient ferroelectrics
of interest here. Long experience with electrostriction in per-
ovskites has shown a remarkable consistency in the magni-
tudes of the Q;;;; constants. It may be noted however, that in
spite of excellent potential in transducers, the relaxor ferro-
electrics like PMN have unusually low Q;;,; values, particu-
larly at temperatures close to T,,, the temperature of the
dielectric maximum.'? Should we expect similar consistency
in the normalized flexoelectric constant #ij/x and will the
relaxors again appear anomalous. Unfortunately there is cur-
rently almost no database of flexoelectric constants from
which to judge. :

Recent measurements on the Frequency Agile Materials
for Electronics (FAME) DARPA program'> suggest that lead

strontium titanate (PST) solid solutions can be fabricated

with Curie points close to ambient, classic Curie—Weiss be-
havior, no dispersion and very low dielectric loss, testifying
to the absence of relaxor effects. Large samples are difficult
to procure but will be measured. Similarly, flexoeleciric mea-
surements on a nonlead based relaxor ferroelectric such as
barium zirconium titanate could also give important addi-
tional information.

This work has been supported by the Office of Naval

~ Research (ONR) under Grant No. N00014-99-1-1011. The

authors would also like to thank Dr. Ahmed Amin of NUWC
for making the excellent BST solid solution ceramic samples
available for these measurements. ,
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Strain-gradient-induced electric polarization
in lead zirconate titanate ceramics
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Abstract |

Strain-gradient-induced polarization or flexoelectricity was investigated in ﬁnpeied
soft lead zirconate titanate (PZT) ceramic where the texture symmetry cocom férbids
- macro-piezoelectricity. Even under high strain gradient (1 ‘m'l) the inéuced polarization is
small (1.6 qu’mz) at 20 °C. Higher strain gradients induce ferroelastic poling and an
additional extrinsic contribution to the flexoelectric coefficient 12 raising the value from
0.5 to 2.0 pC/m. Cooling through the Curie Point (7¢) under maximum stress (80 MPa)
where the peak permittivity (~20,000) could raise y;, to 20 uC/m, the equivalent _eiectzic
field is still only ~1 i{Vi'm, inadequate to achieve significant ferroelectric poling. The

situation may be different in thin PZT films where much larger strain gradients can occur.

- ® E-mail: mawenhui@mpi-halle.de




The well-known elasto-electric coupling effects include piezoelectric effect,
electrostrictive effect, and Maxwell stress effect. Piezoelectric ceramics [1] and more
recently single crystals [2] have demonstrated the capability for broad applications in
sensor, actuator and transducer devices. In soft polymers, it is shown recently that
Maxwell stress effect (attractive forces between opposite charges on the electrodes) can
generate ultrahigh strain responses and exhibit great potential for a variety of
electromechanical device applications [3]. All the above-mentioned physical effects,
however, generally assume the situations of uniform stress or strain. In nature, there is
élasto-electric coupling caused by inhomogeneofls deformation where stress or strain
gradient associated polarization effects (flexoelectric effects) need to be considered.
Overall, mechanical stress or strain can generate electric polarization in a deformable
dielectric material through the following two mechanisms,

P=d %r. g
i = QO e+ My PV 1)
I

In Eq; (1) and thereafter Einstein summation convention is assumed (i, j, k, [ = 1, 2, 3).
The first term on the right-hand side refers to the well-known direct piezoelectric effect,

where o is the stress uniformly distributed across the sample and dj; is the
piezoelectric coefficient, a third-rank polar tensor. The second term on the right-hand side

0¢

refers to the strain gradient ( ) induced polarization and g, is the flexoelectric

X
coefficient, a fourth-rank polar tensor. In centrosymmetric materials, d;; =0, so the

piezoelectric term in Eq. (1) can be eliminated, therefore,

i ijkl axl




where F, is the electric polarization induced solely by strain gradient.

When reviewing the history of flexoelectric investigations, it is noted that while the

‘concept was originally formed in early 1960s [4, 5], not until 1981 was such effect in

crystalline solids given the name “flexoelectric” [6]. Based upoﬁ an ionic model [7],
Tagantsev aﬁaiyzed the ﬁéxeelectric effect and suggested possible larger effects in
ferroelectrics. In soft polymers Marvan et al. [8] observed flexoelectric coefficients of the ;
order ef‘ 10" to }0'1“0 C/m. Up to now very little attention has been paid to test the
magnitude of flexoelectric coefﬁcienté and the mechaniszﬁ remains unclear. Recently we
measured the flexoelectric coefficients (u12) in ieaé magnesium niobate (PMN) [9, 10] (a |
well-known relaxor fezmelectdc material) and barium strontium titanate (BST) [11] (a |

normal ferroelectric material). Both materials were tested in the phase region Wlth

macroscopic cubic symrnetry, moreover the samples were measured in the form of a

cantilevered beam so that any remnant piezoelectric contributions from the top and
bottom halves of the beam would cancel. In this letter, we mvestzgaie the flexoelectric

effect in a well-known PZT piezoelectric ceramic in the ferroelectric phase by usmg a

four-point bend fixture to generate a uniform strain gradient.

In this work several interesting qﬁestiqns were explored: (i) Using a four point bending
fixture is it possible to induce and measure a quasi-static flexoelectric polarization
generated by uz; (ii) Is the flexoelectric polarization enhanced or inhibited b}f the onset
of ferroelastic domain wall motion ivhich will be evidenced by change of the flexural
stiffness and the development of remnant curvature in the sample; (iif) Is it possible in

soft PZT to reach levels of flexoelectric induced field sufficient to pole the ceramic into a

- piezoelectric form.




The samples used were unpoled PZT-5H ceramics (doped with La and Sn) fabricated
by TRS ceramics company, State College, Pennsylvania. Dielectric measurements

performed using an HP4284A LCR meter show a weak field permittivity of 2,200 at 20

°C and a strong but rounded dielectric maximum (&,%20,000) without little dispersion

over the frequency range of 1 kHz to 1MHz [Fig.1(a)], suggesting a diffuse phase
transition without strong relaxor character. Polarization hysteresis loops measured using a
modified Sawyer-Tower circuit show remnant polarization of 35 pC/em’ and coercive
field of 7 kV/cm [Fig.1(b)] with no discernable bias. Young’s modulus was measured to
be 70 GPa by a dynamic resonance method.

A uniform strain gradient was generated using a 4-point bend fixture schematically
illustrated in Fig.2(a). Samples for measurement had dimensions 60 mm long, 7 mm wide
and 3 mm thick. Surfaces were carefully polished and the samples were annealed at
700°C to relieve surface stresses. Sputtered gold electrodes with dimensions 10 x 7 mm?
were applied to upper and lower surfaces in the center of the beam. No residual
piezoelectricity could be detected by Berlincourt d33 meter, and the impedance trajectory
from 1 kHz to 1MHz was free from evidence of piezoelectric resonance. The bend test
was carried out according to the ASTM C-1161-94 by using an Instron machine Model
4202 with a 10 kN load cell. Outer and inner spans of the fixture are 40 mm and 20 mm
respectively. The generated electric charge was detected by a Keithley 6517 electrometer
that can resolve 10 fC and will me%ﬁe up to 2.1 puC. Before measurement the
electrometer was carefully calibrated for voltage burden and input offset current.

The stress distribution along the sample length direction (x;) is shown in Fig.2(b).

Within the inner span the stress o,(x,) is uniform along the length, while along the




thickness direction (x3) the stress oy;(x;) varies and there is a stress or strain gradient as

shown by Fig. 2(c), which can generate electric polarization through the flexoelectric
effect. Because the bar length is much greater than the bar thickness, we omit the shear
stress and étrain and only consider the principal stress and strain. Therefore, for
simplification here only one suffix was used for describing the stress and strain tensors.
The absolute value df surface stress was calculated using the following equation

3FL

)

where F is the load, w the width, d the thickness, and L the outer span of the bend fixture.
The strain gradient in the thickness direction is given by

0 (x;) _12st
&, I?

@
where s is the crosshead speed and ¢ the time gone by.

Figure 3 preéents data on the surface sﬁess vs. strain curves for tésts carried out at 1
mm/min and 0.2 mm/min crdsshead speed. As shown in Fig.3(a), the flexure strength is
‘measureé to be 85 MPa. The softening of the samples at certain stress/speed levels (e.g.,
around 30 MPa for 1 mm/min crosshead speed) we believe corresponds to the onset of
ferroelastic domain motion. As expected in PZT the sample becomes softer at lower
loading rates due to the ré}a}iational nature of ferroelastic domain switching. That

ferroelastic switching has occurred at the higher 1oadiné levels is evident by a static
| remnant curvature in the sample after testing (Fig.4).

For an impoied PZT ferroelectric ceramic at the morphotropic phase bomﬁdary,

although individual grains may have lower symmetry (tetragonal or rombohedral) which

permit piezoelectricity, in the volume of the ceramic one may expect a macroscopic




symmetry of cocom, so the non-zero components for the flexoelectric coefficient uyx
should be u1111, #1122, and 1212, or in matrix notation Hs Hnz and tu4. Since in the current
investigation any remnant piezoelectric effects from the top and bottom halves are well
balanced and there is only strain gradient in the thickness or x; direction, so the generated

electric polarization can be composed of only flexoelectric polarization as shown below,

0&;(x3) _ 0&(x;)
= H2
Ox4 O

5 4
P= -a’_ __Fid?slo-l (33)dx; + 1y, %)
2

Flexoelectric polarization vs. strain gradient is displayed in Fig.5. It is clear that the
behavior is not linear, showing a low-gradient and high-gradient linear behavior but of
different slope. The changeover occurs at the gradient ~ 0.3 m™ corresponding to the
onset of ferroelastic switching. At very small strain level, the sample is only subjected to
elastic deformation, so the measured electric polarization response represents the intrinsic
flexoelectric effect. The low-gradient slope corresponds to a flexoelectric coefficient 1,
= 0.5 uC/m, and the high-gradient slope takes u;; = 2.0 uC/m showing that ferroelastic
domain wall motion aids the response. |

The measured flexoelectric polarization is very small compared to the remnant
.polarization, only 1.6 ;L.C/m2 at a strain gradient of 1 m™'. By using a relative permittivity
value of &,=2,200 (at 1 kHz), we figure out that a strain gradient of 1 m™ is equivalent to
an electric field of 100 V/m, which is obviously too small compared to the coercive field.
On a simple point charge model, flexoelectric coefficients 4; has the magnitude e/a
where e is the electron charge and a the dimension of the unit cell [5]. Thus in high-
permittivity ferroelectrics we may expect from elementary theory of flexoelectricity [7]

that u; be proportional to dielectric susceptibility z,; following a relation [11]:



3—5;; =Wy :ez‘ | (6) ‘
kwhere y is a coﬁstaht of ﬁraﬁie close to umty For the PZT unpoled ceramic at low
gradient levels the normalizéd ﬂexoelectric coefficients - ‘ui;/ X 8t 20 °Cis 0.23 nC/m
gwmg ¥ x{}fS?. In i‘ead’ mégnesium niobate (PMN) from our earlier study [9, 10],
! #5 is 0.26 nC/m giving frz 0.65, both in reasonable accord With‘ThE elementary
theory. For Bay ¢7S1033Ti0; (BST) cerémic at 25°C howeyer 12/ %5, =3.72 nC/m yielding
a vaiue 7=9.3 [1’»1} mﬁch higher than those in the Iead-béséd sysﬁems. " |

It may be noted that in earlier inveétigations of £he thermo-polarization effects Strukov
~et. al. [13] found exceedmgly high values for the normahzed thermopolarization
'coeﬁicxent ( be) in tngiycme sulfate (TGS) which they atmbuted to the order-disorder
nat'ure‘of the ferroelectric phase change in this campeund. We note that in BaySr;.TiO; |
[13} there is strong evidence of a local order-disorder component beiween polarization
vectors in the unit cell. It W111 be mteresnng to measure 4, in potassium mo’bate tantate
(KTN), where}again' Order-diserde_r has been identified [14], to see if the coefficients are | |
again aneniaiausly large.

In conclusmn, the PZT ceramic does exhibit modest ﬂexoelecmcity and ferroelastic
doxﬁam wall motion enhances the response, but it is not ;mssﬁ:}e in our samples usmg 5
stress levels up to the full fracture strength to mduce ferroeiectnc pchng, althaugh
ferroelastic poling was patently ebvzons.

In the PZT thin films epitaxially grown on lattice-mismatched substrates the strain

,gradient between surfaces and stram—rehevmg dislocations can be exceedingly 1arge and

the ﬂexoeiectnc effects could be of major unportance in these systems.




References

[1] B'. Jaffe, W. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic Press, New York,
1971).

[2] S. Park, T. R. Shrout, J. 4ppl. Phys. 82, 1804 (1997).

[3] R. Pelrine, R. Komnbluh, Q. Pei, J. Joseph, Science 287, 836 (2000).

[4] V. S. Mashkevich, and K. B. Tolpygo, Soviet Physics JETP 5, 435 (1957).

[5] Sh. M. Kogan, Soviet Physics-Solid State 5, 2069 (1964).

[6] V. L. Indenbom, E. B. Loginov, and M. A. Osipov, Sov. Phys.-Crystallogr. 26, 656
(1981).

[7] A. K. Tagantsev, Sov. Phys. JETP 61, 1246 (1985).

[8] M. Marvan, A. Havrének, Progr. Colloid Polym. Sci. 78, 33 (1988).

" [9] Wenhui Ma, L. Eric Cross, Appl. Phys. Lett. 78,2920 (2001).

[10] Wenhui Ma, L. Eric. Cross, Appl. Phys. Lett. 79, 4420 (2001).

[11] Wenhui Ma, L. Eric Cross, Appl. Phys. Lett. 81, 3440 (2002).

[12] B.H. Strukov, A.V. Dautyan, E.L. Sorkin, K.A. Minaeva, Bulletin of the Academy of

Sciences of the USSR: Physical Series 49, 276 (1985).
[13] O. Tikhomirov, H. Jiang, J. Levy, 4ppl. Phys. Lett. 77, 2048 (2000).

[14] G. A. Samara, L. A. Boatner, Phys. Rev. B61, 3889 (2000).



‘Figure Captions

Fzg 1 (a) Weak field d1e§ect3:1<: penmttmty (E~10 Wcm) as a function of frequency and
temperature in t?ne saﬁ PZT-5H sample measured (b) dlelcctnc hysteres:s (Pvs.E)
in the soft PZT-5H compesmen. :

Fig.2 Schcmaﬁc illustration of strain gfadicnt iﬁduced quasi-static polarization

| measurement, (a) typical 4-point 5ending ﬁxmfe; (b) stress distribution;
(9] schefnatic of étrain gradient and the induéed poiaﬁzatien aieng the thickness
of the sampie

Flg 3 Surface stress as a functzen of strain measured at twe d1fferent crossheéd speeds on
PZT-SH bar, (a) 1 mm/mm cross head speed (the arrow mdxcates the ieve} of stress
at ‘Wh;ch the sample broke) (b) 0.2 mm/min crosshead speed

Fig 4 Obwcns stanc curvature mduced in the PZT-5H sample by ferroeiastlc domain wall

' ,motlon at the higher stress levels.

, Fig.S Polarization versus strain gradient for an unpoled PZT-5H sample induced duringa

4—peint bend test carried out at a crosshead speed of 0.2 mm/min.
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List of the changes on Ms. #1.02-3586

. The discussion of physmai nature for the expemnentai result is added, please see the
1% and 2 paragraphs in Page 7. It appears that the lead-based systems (PMN, PZT)
are in reasonable accord with the elementary theory, while in BST the coefficients are
exceedingly large. The order-disorder components are supposed to be related to this
phenamenon, but future efforts are needed to clarify it.

. Ref. 11 was completed, ref. 12 was changed, and refs. 13 and 14 were aéded.

. Dielectric measmémenis and ferroelectric hysteresis loop were added and listed as
Fig.1(a) and Fig.1(b), respectively.

A picture showmg the renmant curvature after 4-point bend test was added and listed
as Fig 4.

. Eqs4,5and 9 in the eld manuscript were removed in order to make the paper more

~ concise.

. In the abstract, the last pai'agi'aph in Page 3, aaid the last paragraph in ?age 7, the
~ significance of the investigations on flexoelectric effect were further elaborated and it
is suggested that in thin films the effect can be of major importance.
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~ Microscopic Origin of the Two-Sublattice Model
for Antiferroelectric State

R.A. HATT and W. CAO

-Materials Research Laboratory, The Pennsylvania State University,
University Park, Pennsylvania 16802, USA

‘{Received June 2, 2000)

The macroscopic model proposed by Kittel for antiferroelectrics assumes two interpenetrat-
ing sublattices with antiparallel polarizations. Although the model can explain many proper-
ties, it does not provide microscopic lattice displacement patterns associated with these
sublattices since the order parameter in the model is a volume-averaged quantity. We propose
a model based on microscopic positioning of symmetry elements and use an order parameter
field directly associated with the local dipoles, which can provide a more transparent defini-
tion for the sublattices used in the Kittel model. We also include nonlocal gradient interac-
tions to model multldomam structures and domain walls in ferroelectrics.

Keywords: antiferroelectric; Landau theary of phase transitions; sublattice model: micro-
sceplc symmetry

INTRODUCTION

The antiferroelectric (AFE) state was modeled by Kittel based on the
Landau theory and use two interpenetrating sublattices with equal but
* opposite polarizations.! This model can successful describe the double
hysteresis loops’ observed in antiferroelectrics, but contains no
mechanism to describe the spatial relationship between the two

[341)/129
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sublattices. In other words, there is no mechanism to guarantee the two
sublattices to exist alternately in space to form the antiferroelectric
state. .

We propose a microscopic model for the AFE state, which not only
provides the origin of the Kittel sublattices, but also gives the fixed
spatial relationship between them.  This model is based on
microscopic symmetry and group theoretical methods. By adding the
gradient energy associated with the AFE state, it can also be used to
describe inhomogeneous structures, i.e., orientation twins and
antiphase configurations.

In describing this model, we will use ammonium dihydrogen
phosphate, or ADP, as a prototype. The method itself is quite general,
and can be applied to any other antiferroelectric species.

MICROSCOPIC SYMMETRY

The high-temperature paraelectric phase“ of ADP is tetragonal, with
space group 142d. At Tc = -125°C, a transition to an orthorhombic
AFE phase*” with space group P2, 2; 2, occurs, with a doubling of the
primitive unit cell.

s‘-~.‘ z=o ./
=1/4
- . ~ 2=14 %o
‘ z=1/24,——‘.
"‘ o 2=3/4 S--

Figure 1 Dipole moments within the AFE unit cell.

The transition is driven by an M-point soft mode corresponding to
the MM, physically irreducible representation.8 The antiferroelectric
state consists of four individual molecular dipole moments, parallel to
the a-b plane, within the unit cell of the AFE phase as shown in Fig. 1.
The transition can be described by a two-component order parameter
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Ab

Figure 2 Dircctidns of (000) dipole moment in the four AFE domains.

that corresponds to the components of the molecular dipole at the
(000) position. There are four energetically equivalent orientations for
this dipole, as shown in Figure 2, and so there are four distinct
domains in the AFE phase, with the two-component order parameters
as listed in Table I. For convenience, we assume p,>p; in the low
temperature orthorhombic structure with space group P2;2;2;.

TABLEI Values of the order parameter for the four different domain

states. :
- Domain Order Parameter
St (Pa ps)
8 (P5-pa)
S35 (-Pa-ps)
Y : . (-Pe Pa)

Since the space groups of the two phases and the irreducible
representation are known, the symmetry allowed distortions, based on
the positions of the microscopic symmetry elements, can be
calculated. This is done using the ISOTROPY computer pregramg, and
the results for the Wyckoff a-sites are shown in Table II. Using the
distortions in this table, the dipole arrangement can be reproduced for
any single domain state giver in Table I (similar to the arrangement
shown in Fig. 1 for §)). The relationship between these allowed




132/[344] R.A. HATT and W. CAO

distortions and the positions of the microscopic symmetry operations
is illustrated for domain S; in Fig. 3

TABLE II. Group-theoretically allowed distortions at Wyckoff a-
sites in domain S). |

Position Distortions
(0,0,0) Pa (1,0,0) + pp (0,-1,0)
(4.4.4) P (-1,0,0) + p» (0,1,0)
(04,4) Pa (-1,0,0) + ps (0,-1,0)
(£,1,2) Pa(1,0,0) + p» (0,1,0)

RELATIONSHIP TO THE KITTEL SUBLATTICES

Our model has focused on the microscopic structure of the AFE state.
In order to understand the macroscopic behavior (in particuldr, the
double hysteresis loops observed when the antiferroelectric material is
placed in an external electric field), we must make a connection

Fig.3 Actions of symmetry elements generate dipole arrangement
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 between our rmcrascepzc model and the Knte} macroscopic model.
Since polarization is an average of molecular dipole moments over a
given volume, the sublattice polarizations P; and P; in the one-
dimensional Kittel madel can be defined, in terms of the molecular
dipole moments, as ‘

-_-— me} ‘ =-— zp‘". : . '(Ia,b)

{p. >0} , {P.. <0}

In other words, in the AFE state those dipole moments with a positive
component in the g-direction form one sublattice with polarization P,
and those dipole moments with a negative component in the a-
- direction form the other sublattice with pelanzaucn P3, as shown in
Fzg 4.
On a unit cell level, we can further define the snbiatﬁces in terms of

symmetry operations. Referring to the posmomng of symmetry
aperattcns in F’g 3, define p, andp as

P.=p+{C, ilOi}p

. (2a,b)
p-={C,, |11ilp +(C,, |0LL)p )

: Figure 4 Deﬁmng the macroscopic Kittel sublattices in terms of the '
lmcroscopzc dipole moments.
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These two quantities, when volume averaged over all unit cells,
naturally recreate the Kittel sublattices on the microscopic scale. _

Our microscopic theory presented here not only can derive the
macroscopic Kittel model, but also can account for the spatial
relationships among dipoles of adjacent cells. More importantly, it
also gives the dipole tilt, which occurs in the ADP system, leading to
the observed unit cell doubling associated with the antiferroelectric
phase transition.

FREE ENERGY DENSITY

The free energy originally incorporated in the Kittel model included
only local terms:

F=a,(P}+P3)+a, P,P,+0;( P1+P}) (3)

In our model, however, knowledge of the irreducible representation
involved in the transition allows non-local terms to be added in the
form of gradient invariants. For the ADP case being considered, this
free energy density can be written as

F=A(p?+p)+B,(pl+p3) +B,(p+p3)
+By(p}p,— P, P3)+ Ci(p] +p}) +Co(pip] + plp3)

3p,\ (3p,\ 4

+C;(pfpz-mp§)+u,[(_a£1) +(_51;’;) ] @
dp,9p, 9p,3p, ap,Y (3p,)
+D2( ax ax ay ay +D3 ay + ———ax .

where p; and p; refer to the two components of the order parameter,
i.e., the @- and b- components of the (000) molecular dipole moment.
All coefficients are temperature independent except A= A(T -T,).

"With the addition of the order parameter gradient terms, this free
energy can be used to describe the change in order parameter across a
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domain wall in an inhomogeneous structure. For example, the change

~in order parameter across the domain wall in an orientation twin
formed by domains S; and S, can be calculated by normalizing the
erder parameter usmg the following change of variables:

“”f1+p‘°>fz PO RS - (5a)
P, {0) fi p(ﬂ} fl {ﬂ) (K fi f2 . | (Sb)
~ This leads to a coupled set of differential equatlons upon energy
‘ m:mmxzanen
froe=—7f, - fx +f '*'bf:fz +' QI+ ) _ (6a)
frowe=—Tf~ fz +f2 'i'b.fzzfz""c(f; fz'i'zfxzfz (6b)
| with the boundary condition

t 7
o l.§. l'*‘f,xﬁ"'}"“’ 9 ,x —) -0
fl_—.{\}z ‘\j4 . . fz=

” U]
0 K e bl e

- where 7 descnbes the temperature degendence These equations can
be solved numerically, and solutions for three temperatures are shown
in Fig. 5. Further details of this process are reported elsewhere.'®"!

o

™ 3

[}

normalized order parameter

1 i B |
-1 o 1 2 3
rescaled x" axis

-

'

L7V
'

N

Fig. 5 Calculated profiles for a representative orientation twin
fer three different temperatures.
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CONCLUSION

We proposed a Landau-Ginzburg type model for the antiferroelectric
state based on microscopic symmetry and group theory. The order
parameter corresponds to the local dipole moment within the unit cell,
instead of the macroscopically averaged polarization conventionally
used. Our model can rigorously derive the sublattices of the model
proposed by Kittel and address the dipole tilt and cell doubling in the
antiferroelectric transition. The so derived sublattices are intrinsically
linked, which resolved the confusion encountered in the Kittle model.

The model is also extended to include order parameter gradient
terms. These nonlocal interaction terms allow inhomogeneous
structures, such as, orientation twins and antiphase walls, to be
modeled.
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Lanﬁau-Gin:hurg model for anﬁferroeiectric phase transitions based on microscopic symmetry
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~ The only Landau-type model for antiferroelectric phase transitions was proposed by thtel in whxch two
interpenetrating sublattices with opposite polarizations of equal amplitude were assumed. The theory, however,
did not include any mechanism to specify the relative spatial posxt;ans of the two sublattices, and therefore
could not address the cell donbkng during antiferroelectric phase transitions. We propose a Landau-Ginzburg-
type model based on microscopic symmetry and group theory, which can, without having to assume sublat-
tices, account for all aspects of antiferroelectric states, including local dipole orientation and cell doubling. The
average of these dipoles naturally leads to the Kittel model. The inclusion of gradient terms in the free energy
allows the modeling of multidomain structures and domain walls in antiferroelectric states.

INTRODUCTION

~ Kittel' proposed a macroscopic Landau-type model for
the antiferroelectric (AFE) state by introducing two interpen-
etrating sublattices with opposite polarizations. His model
describes a second-order transition from the paraelectric state
‘to the antiferroelectric state, by truncating the free energy at
the fom'th order:

where P; and P, are the polarizations of the sublattices. If
@3>0, the transition will favor P; and P, being antiparallel,
making the low-temperature phase antiferroelectric. On the
other hand, if @,<0, the transition will favor P, and P,
being parallel, and the transition will lead to a ferroelectric
state. .
This model has the intrinsic limitation that it contains
only local interactions. In other words, there is no mecha-
nism to fix the spatial relationship between the two sublattice
polarizations within the crystal. This local model creates un-
certainty in the antiferroelectric state. For example, the sub-
lattice polanzaﬁoas P, and P, are assumed at the same lo-
cation in space (or can be anywhere in space), which leads to
the cancellation of P, and P,. Such a situation does not
fully describe the antiferroelectric state in which adjacent
primitive cells acquire opposite dipole moments and the lo-
cal polarization at any space point is actually nonzero. Using
group-theoretical techniques, we propose a continuum model
for the antiferroelectric state built upon microscopic symme-
try. The symmetry allowed distortions associated with the
soft mode are given in our model, which accounts for the
formation of antiparallel dipoles in adjacent cells. The free
energy has also been expanded to include gradient terms of
the order parameter so that multidomain structures, such as
orientation twins and antiphase walls, can be modeled using
* the same formulation. Specifically, in this paper we will use
ammonium dihydrogen phosphate (NH;)H,(PO,) (commonly
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referred to as ADP) as a prototype system to il}usn:#te the
procedure and the characteristics of the antiferroelectric
phase transition.

ANTIFERROELECTRIC PHASE TRANSITION‘

The high-temperature phase of ADP is tetragonal with
space group I42d.3~® Following the notation of the Interna-
tional Tables for Crystallography,’ the conventional (non-
primitive) unit cell contains four formula units. Two of the
formula units are in the primitive cell while the other two are
related by the centering translation (333). At To=~
—125°C, the material undergoes an antiferroelectric transx-
tion to an orthorhombic phase with space group P2,2,2, .5
The transition is driven by a zone-boundary M—pemt soft
mode and results in ionic displacements that create one di-
pole moment in each formula unit (four dipoles per AFE unit
cell) as shown in Fig. 1. These dipole moments form a net
antiferroelectric polarization along the [100] or [010] of the
parent phase. This means that the fourfold rotational inver-
sion axis of the parent paraelectric phase is lost during the
transition, which leads to two rotationally related, energeti-
cally equivalent orientation domain states in the low-
temperature phase. Moreover, the transition causes a
primitive-cell doubling (equivalently, the centering point in
the conventional parent cell is lost), leading to two additional

S 2=0 o7
z=14" g

. z=‘1/2;,-"'
b! i z=3/4 -~
s

FIG. 1. Dipoles formed in the antiferroelectric phase of ADP in
a conventional cell. The lattice displacement pattern can'be gener-
ated from group theory.

818 ©2000 The American Physical Society
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————— 20 o7 TABLE II. Group theoretically allowed distortions at Wyckoff a
z=0 sites in domain .
o
’ ‘ z2=1/4"F>o Position Distortions Relationship to (0,0,0) site
h i
— — & 0,00) p.(1,0,0)+p,(0,~1,0) {E|000}
i . 231 Pa(—10,0)+p4(0,1,0) {Carlz33
R 2= 0,29  Pa(~100)+p,(0,~1,0) {1515
bt T (31D Pa(1,0.0)+p4(0,1,0) {Cirh)

FIG. 2. Microscopic positions of the symmetry elements, creat-
ing the antiferroelectric polanzanon The AFE unit cell is shown by
the dashed line, with origin at (0, o B) The screw axes parallel toa
are at z=3 2, and the screw axes parallel to b are at z=

antiphase states that are translationally related to the two
orientation states. Overall, there are four possible domains in
the AFE state of ADP.

GROUP THEORETICAL DESCRIPTION OF THE
TRANSITION

Once the structures and space groups of the high- and
low-temperature phases have been determined, the micro-
scopic positions of the symmetry elements are fixed (we will
use the settings of Ref. 7), as shown in Fig. 2. Specifically,
we note that the three mutually perpendicular twofold screw
axes in the AFE phase do not allow a net dipole moment for
the unit cell of the low-temperature phase, although they do
allow antiferrolectric polarizations.

The M-point soft mode driving the transition in ADP may
be descnbed by the physically irreducible MM,
representation,* which is simply the direct sum M 3OMF
(here we use the labeling of Miller and Love®). This repre-
sentation carries a two-component order parameter (OP),
(p1,p2), whose values are listed in Table I. Physically, the
OP corresponds to the molecular dipole moments within the
a-b plane; p, represents the component along the a direction,
and p, represents the component along the b direction. This
OP is a continuum field, which is equal to the dipole moment
at the sites of each formula unit.

Knowing the irreducible representation allows the lattice
distortions that arise in the transition to be calculated using
the 1SOTROPY? software package. For simplicity we will re-
strict our discussion to distortions arising at Wyckoff a sites
only, which are listed in Table II. These distortions can be
used to construct the dipole arrangement within the low-
temperature unit cell. As an example, consider the distortions
that arise in domain S;, for which the OP is (p;,p;)
=(ps.Ps)- If po,>p,, the distortions result in the configu-

TABLE I. Values of the order parameter for different domain
states.

Domain Order parameter
S (PasPs)
s2 (pb ' "'Pa)
S3 (=Pa+—Ps)
S4 (—pb 1pa)

ration shown in Fig. 1, which agree well with the observed
dipolar distribution by Blinc et al.®

Figure 1 was constructed based only on the microscopic
positioning of the symmetry elements and the allowed dis-
tortions from group theoretical considerations, as in Fig. 2.
For example, a dipole moment at position (0, 0, 0) necessar-
ily means, by action of the screw axis parallel to the z axis,
an oppositely directed dipole moment at the parent cell cen-
tering point of (333). The screw axis parallel to the x axis
further implies, from these two dipoles, that the other two
antialigned dipoles within the AFE unit cell must be present.
Hence, there is no need for defining sublattices and no need
to explain why such sublattices would adopt exactly equal
magnitudes but opposite orientation. More importantly, the
spatial relationship between the two sublattices naturally
comes out of our model. If a single dipole moment is formed
within a parent formula unit, one can generate its counter-
parts by symmetry requirements to form the antiferroelectric
polarization of the whole unit cell of the low-temperature
phase Also, since the dipole moment at the centering point
(333) is opposite to the dipole moment at (0,0,0), the dou-
bling of the unit cell size is naturally explained.

HYSTERESIS AND THE RELATION TO THE
SUBLATTICES PROPOSED BY KITTEL

A well-known characteristic of antiferroelectrics is the
double hysteresis loop, as shown in Fig. 3. In the one-
dimensional antiferroelectric model proposed by Kittel, there
is no net polarization. However, if an external electric field is
applied, the sublattice polarization parallel to the field grows
and the other sublattice polarization opposite to the field
shrinks, resulting in a net polarization. When the field
strength becomes sufficiently large, the polarization in the
direction opposite to the field abruptly switches orientation
to become parallel to the field, resulting in a ferroelectric
state. Because of symmetry constraints, a double hysteresis

A
P

Y

FIG. 3. Double hysteresis loop, a characteristic of the antiferro-
electric state.
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~ FIG. 4. Molecular dipole moments in the presence of 333 external
electric field, (a) before switching ané (b) after switching.

will be produced dunng such a switching process.?

In our model, we describe the hysteresis in terms of the
dipole moments associated with each of the four formula
units in an AFE unit cell. Consider an external electric field
- applied to domain S, parallel to the +a direction. This field
-will interact with the dipoles, causing p,>0 to increase in

' magnitude and p,<0 to decrease in magnitude, as shown in

Fig. 4(a). Note that p, is not affected in our model. At suf-
ficiently large field strength, the dipoles with p, antiparallel
to the external field will flip so that p, becomes parallel to
-+a, as shown in Fig. 4(b). This results in a state in which the

dipole components are parallel along the a direction and an-

tiparallel along the b direction. It is a ferroelectric state with
the polarization along a, but Wlth a cell size twice that of the
Kittel model.

In order to make t‘he connection benvee;a our microscopic
~ model and the Kittel macroscopic model, we use the defini-
- tion of the polarization, which is an average of molecular

dipole moments over a given volume P=(11V)2pi. The -

‘sublattice polarizations P; and P, in the Kittel one-

-dimensional model can then be defined, in terms of the mo- ’

. lecular dlpale moments in our model, as

PI=¥; 2{ ?aiﬂ

(pa>0) {Pg<3)

In other words, in the AFE state the formula units containing
.a positive dipole-moment component in the a direction form
- one sublattice with polarization P;, and the formula units
containing a negative dipole-moment component in the a
direction form the other s&blamce with polarization P,. The

2—— 2 Pai- )
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TABLE IIL. Invariants for the antiferroelectric transition driven
by a soft mode corresponding to the MM, irreducible representa-

tion.

[api\? | [ap,\?
=33
5= 9P1p2_ 9p19pa

& o 3}’ 5)’

s 5]

¢P=pi+p}
$1°=i+p))?’
#=pi+p;

$=pip,—p1p3

difference between the microscopic theory presented here
and macroscopic continuum theory of Kittel is that the latter
cannot provide the spatial relationships among dipoles of

~ adjacent cells, and cannot account for the dipole tilt which

occurs in the ADP system.

LANDAU-GINZBURG FREE ENERGY BASED ON
MICROSCOPIC SYMMETRY

Adding OP gradient terms to the free energy, i.e., using
the Landau-sz‘surg—type free energy, will allow us to de—
scribe inhomogeneous structures, such as orientational twins
and antiphase walls. The invariant polynomials of the OP
and its derivatives can also be obtained using the ISOTROPY
program. In this paper, we have truncated the free energy at
the fourth power of the OP to limit our discussions to a
second-order transition. We also assume that the OP field
varies slowly in space so that only the first derivatives of the

. OP are included in the free energy. We write

F=A0P+B,oY+D;5; (i=123), (3)

where the invariant polynomials ¢®, ¢, and &; are given
in Table III. The coefficients A=Ay(T—T,), B;, and D; are

‘ constants.

For single domain states, all derivatives of the OP mt}st
vanish; ie., §;=0. Considering the single domain state §,,
the two component OP is (p,,p;) with both p, and p;, non-
zero. Since the symmetry of the low-temperature phase is
known, the ionic displacements and dipole moments in each
unit cell can be determined experimentaily from neutron
scattering. In other words, the ratio of the amplitudes x
=p,/p; can be measured in the antiferroelectric state

Pp=KPg- » : {4}

Because all derivatives of the OP vanished in the single
domain state, energy minimization of Eq. (3) leads to

oF

ap,

=2Ap,+[4B,(I+«*) +4B,
Hip=(p, .xp,) ‘

+B;3(3x—&*)]p3=0, | (5a)
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oF
op2

=2Akp,+ [43,(1 + k%) +4B,k?
p=(p, kp,)

kp3=0. (5b)

1
+B3(;—3K)

In order for Egs. (5a) and (5b) to give the same solution for
P, the sum involving the B, and B; terms must be equal,

1
432+B3(3K_K3)=432K2+B3(;_3K), (6)

which can be written as a fourth-degree polynomial equation
in x:

k*+bik*—6k*—br+1=0 )
with b=4B,/B;. This equation has four roots,
1 1 o
Ky, Kl,Kz, <)’ ®
where
b 1 1
K== Vi6+b2+ —25(16+ b2)"\b+16+b2,
(92)
b 1 1 '
K== =+ =16+ b2+ — (16+b2) YV ~ b+ 16+ b2
4 4 2v3
(9b)

One of the above solutions, Eq. (9a), will be less than 1 and
greater than 0 (i.e.,, 0< «<1), which is the solution we seek
since it corresponds to the OP in domain S, with p,>p,
(see Fig. 1). Because Eq. (7) does not contain any
temperature-dependent terms, the solution « will be tempera-
ture independent.

Once « is determined, Eq. 5(a) allows the value of p, to
be determined as a function of the expansion coefficients in

Eq. (3):
2 —2A
P.= b) 3
¢ 4B;(1+«*)+4B,+B3(3k—«)
We note that the expansion coefficient A is temperature de-
pendent, A=Ay(T—T,), so that the amplitude of the order

parameter satisfies the universal relation for a second order
phase transition, i.e.,

(10)

PyXPo<NT —T.

ORDER-PARAMETER PROFILES FOR TWINS AND
ANTIPHASE STRUCTURES

The Landau-Ginzburg free energy, Eq. (3), allows us to
describe inhomogeneous structures. We will study both ori-
entation twins and antiphase structures in the AFE phase,
each composed of two different domains separated by a do-
main wall. Since there are four possible domains in the AFE
state, there will be 4X4=16 possible pairings of domains
from which we can construct orientation twins or antiphase
walls. However, using the idea of equivalence in group
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TABLE IV. Equivalence classes of two-domain (twins and an-
tiphase) structures.

Domain pair Type Relation to S,
(51,87) orientation twin {0,041y
(5,.82) orientation twin {opalt13)
(S,,83) antiphase structure (E|L4L

theory, the pairing set can be much reduced. We find three
classes of two-domain structures to be considered, as listed
in Table IV along with the type of structure represented (the
trivial degenerate structure that has the same domain on both
sides of the wall is actually a single domain structure): two
orientation twins, and one antiphase structure.

We will first consider the orientation twin formed by do-
mains S, and S;. The domain wall orientation for such a
twin can be determined by strain matching,'' noting that

this transition belongs to the Aizu'® species 22mF222. The
strain allowed domain walls are the planes x=*y (see Fig.
5). Since properties of the crystal will change only along the
direction normal to this wall, we will rotate to a new coor-
dinate system so that x’ is normal to the wall. The OP com-
ponents (and any other properties of the twin) then will be
functions of x’ only. This means that the derivatives in the
gradient part of the free energy, Eq. (3), can be rewritten as

dp 1 6p 6p l o"p
—x rwE (11)
ox Vi ox ay V‘i 8x -

For such a twin structure, the OP varies across the wall
from its value in S, to its value in §,,
Pa- x'——oo Pb> x,_’_w

p2=

~Pa> (12)

P1= Dy, X' =+’ x'— 4o

In order to match the boundary conditions in Eq.. (12) it is
convenient to change the dependent variables

P1=pS1tDpuf2,

pof2- o (13)

Here, the functions f, and f, are normalized order-parameter
components and have simpler boundary conditions

P2=puf1—

S S
j' i
“ . L4
v
—— N
S Lo & 3 S,

E

O g N g0

e i

FIG. 5. Twin structure with a domain wall onented parallel to
the (170) lattice plane.
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normalized OP -

o ] | 1 Ll
- - -4 -2 o 2 4
~ rescaled x" axis

FIG 6. Numencal selu!zaﬁ for the order parameter profile of an
onentatmn twin with 9’ =3.0.

0, x'—=—

f2= 1,‘ Py (14

I, x'—»-o
Ji=

0, x -——>+°°

- We now apply the Exﬂer—Lagraage equatmgs
d OF oF |

dx’ z?f5 o é‘f,

and obtain a coupled set of ordinary differential eqaatxons
2

—,‘f=9-‘f;+;3f1"1‘7f1f25

(i= 12) L)

Dj—ziz’rwfzwféwf%fz-, a9

where :
D={1+K2}{b,+95),;. -

' a=(1+:D4, . o
-pa[4(1+1c2}281+4{1+x4}83+4x(1 ;8)33}
* —p£[4(1+x2}281+24x282 12x(1 x2}83]

In order to meet the boundary candzaons in Eq. (14), we
must have

a+ §=0. " RN
The x' axis can be rescaled to -

k‘,‘xrssx*”\@ W

. to arrive ata simpliﬁed set of dimensionless equations

a*f, ,
d "2 . f1+«fl+ygf1f25
d’f,
T f2+f2+?;flf2v : . (20)

' where y'=1v/B is temperature in egendem Equations {20)
* have been solved for other systems™" and the solutions for
- the choice of y’=3.0 are illustrated in Fig. 6.
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. 7 \;Sj

e B2

FIG. 7. Dipole arrangement in the vicinity of an annphase wall
between §; and 3.

- For the second type of orientation twin im:b}vigg domains

- 8; and S, the boundary conditions are

x'——o

X' = Pbs
. O

'_ Pas
P1 —Pp, X —+x’ ?2 Dar X >+

We make the following change of variables
P1=paf1=Puf2,

P2=puf1tpafa. ~ (22)

The same set ef equations, Eqs (20), for the functions f yand
f2 can be derived and similar solutions can be obtained.

For the antiphase structures, we cannot use the strain
compatibility relations to predict the ‘orientation of the wall
since the strain compatibility relations are autemancaliy sat-
isfied. However, we can simplify the equations to quasi-one-
dimensional using the same procedure described above.
Again, we rotate the coordinate system such that x’ is per-
pendicular to the wall. The derivatives in the gradient part of
the free energy can again be expressed in terms of deriva-

tives in the x’ direction. By defining the new normalized
order parameter g,

P1=Pa8 P2=P»8 g (23}

and using a rescaling of the space variable similar to Eq. (19)
(but dependent upon the specific orientation of the wall), we

- can simplify the system to a single dxfferenﬁal equatmn fcr

the function g,

dx"2=_=g+gf o T “‘(2'4)

For the antiphase structure formed by domains S, 1 and S3
(see Fig. 7), the boundary conditions are

x'——00 x ——®

_ —Pa- _ ~Ps
2= Pay X' 4o’ 2= Py x—->+°°
| (5)
or
-1, ¥—o-w o
&= 1, Xt @)

Equation (24) has the analytic solution ;
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SUMMARY AND CONCLUSIONS

We have proposed a Landau-Ginzburg model based on
microscopic symmetry to describe a second-order antiferro-
electric phase transition. The OP field used is directly corre-
lated to the local dipole moments of the formula units, in-
stead of the macroscopically averaged polarization. QOur
model not only can derive the macroscopic model proposed
by Kittel but also can address the dipole tilt and cell-doubling
in the antiferroelectric transition. There is no need to assume
separate sublattices in our model.

When the antiferroelectric state is switched to a ferroelec-
tric state by an external electric field, our model predicts a
unit cell size twice as large as that of the macroscopic picture
obtained from previous investigations.? This picture is more
consistent with the microscopic picture observed experimen-

LANDAU-GINZBURG MODEL FOR ANTIFERROELECTRIC ... 823

tally that the dipoles are actually tilted from the a and b
directions. ‘

There are four domain states in the antiferroelectric phase
and they form two distinct orientation twins and one type of
antiphase structure. The addition of gradient energy terms in
the free energy allows us to model multidomain inhomoge-
neous structures. Numerical solutions for the inhomogeneous
OP profiles describe the gradual change of the dipole ampli-
tude and orientation across the domain walls. We find that if,
in the free energy, only the coefficient of the quadratic term
is assumed to be temperature dependent, the local dipoles
have a fixed orientation independent of temperature, while
the amplitude of the dipole moment is a function of tempera-
ture.
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